3.設正數(shù)x,y滿足:x>y,x+2y=3,則$\frac{1}{x-y}$+$\frac{9}{x+5y}$的最小值為( 。
A.$\frac{8}{3}$B.$\frac{11}{4}$C.4D.2

分析 由條件可得2x+4y=6,即有原式=$\frac{1}{6}$[(x-y)+(x+5y)]($\frac{1}{x-y}$+$\frac{9}{x+5y}$),展開后運用基本不等式,即可得到所求最小值.

解答 解:正數(shù)x,y滿足:x>y,x+2y=3,
即有2x+4y=6,
則$\frac{1}{x-y}$+$\frac{9}{x+5y}$=$\frac{1}{6}$[(x-y)+(x+5y)]($\frac{1}{x-y}$+$\frac{9}{x+5y}$)
=$\frac{1}{6}$(10+$\frac{x+5y}{x-y}$+$\frac{9(x-y)}{x+5y}$)≥$\frac{1}{6}$(10+2$\sqrt{\frac{x+5y}{x-y}•\frac{9(x-y)}{x+5y}}$)
=$\frac{1}{6}$×16=$\frac{8}{3}$.
當且僅當3(x-y)=x+5y,即有x=2,y=$\frac{1}{2}$,取得最小值$\frac{8}{3}$.
故選:A.

點評 本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,考查運算能力,屬于中檔題和易錯題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)的定義域為[0,4],求函數(shù)y=f(x+3)+f(x2)的定義域為( 。
A.[-2,-1]B.[1,2]C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知直線l的方程為2x+(1+m)y+2m=0,m∈R,點P的坐標為(-1,0).
(1)求證:直線l恒過定點,并求出定點坐標;
(2)求點P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列命題:
①沒有公共點的兩條直線是異面直線;  
②分別和兩條異面直線都相交的兩直線異面;
③一條直線和兩條異面直線中的一條平行,則它和另一條直線不可能平行;
④三條平行線最多可確定三個平面.
其中正確答案的序號是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.7名同學排成一排,其中甲、乙兩人必須排在一起的不同排法有1440種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=2sinx,g(x)=$\sqrt{3}$tanx,x∈(0,$\frac{3π}{2}$).
(1)求函數(shù)y=f(x)與y=g(x)的圖象的交點;
(2)在同一坐標系中,畫出f(x),g(x)的草圖,根據圖象
①寫出滿足f(x)>g(x)的實數(shù)x的取值范圍;
②寫出這兩個函數(shù)具有相同的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.過點M(-2,4)作圓C:(x-2)2+(y-1)2=25的切線l,又直線l1:ax+3y+2a=0與直線l平行,則直線l與l1之間的距離為2.4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若兩個正實數(shù)x,y滿足$\frac{1}{x}$+$\frac{4}{y}$=1,且不等式x+$\frac{y}{4}$<m2-3m有解,則實數(shù)m的取值范圍是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某公司采用眾籌的方式募集資金,開發(fā)一種創(chuàng)新科技產品,為了解募集的資金x(單位:萬元)與收益率y之間的關系,對近6個季度眾籌到的資金xi和收益率yi的數(shù)據進行統(tǒng)計,得到數(shù)據表:
x2.002.202.603.203.404.00
y0.220.200.300.480.560.60
(Ⅰ)通過繪制并觀察散點圖的分布特征后,分別選用y=a+bx與y=c+dlgx作為眾籌到的資金x與收益率y的擬合方式,再經過計算,得到這兩種擬合方式的回歸方程y=0.34+0.02x,y=-0.27+1.47lgx和如表的統(tǒng)計數(shù)值,試運用相關指數(shù)比較以上兩回歸方程的擬合效果:
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ y=a+bx y=c+dlgx
 $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$
 0.150.13 0.01
(Ⅱ)根據以上擬合效果較好的回歸方程,解答:
(i)預測眾籌資金為5萬元時的收益率.(精確到0.0001)
(ii)若眾籌資金服從正態(tài)分布N(μ,σ2),試求收益率在75.75%以上的概率.
附:(1)相關指數(shù)R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
(2)若隨機變量X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974;
(3)參考數(shù)據:lg2=0.3010,lg3=0.4771.

查看答案和解析>>

同步練習冊答案