已知直線l1:2x-3y+10=0,l2:3x+4y-2=0.求經(jīng)過l1和l2的交點(diǎn),且與直線l3:3x-2y+4=0垂直的直線l的方程.
【答案】分析:聯(lián)立兩個直線解析式先求出l1和l2的交點(diǎn)坐標(biāo),然后利用直線與直線l3垂直,根據(jù)斜率乘積為-1得到直線l的斜率,寫出直線l方程即可.
解答:解:解方程組,得交點(diǎn)(-2,2).
又由l⊥l3,且
因?yàn)閮芍本垂直得斜率乘積為-1,
得到,
∴直線l的方程為,即2x+3y-2=0.
點(diǎn)評:考查學(xué)生求兩條直線交點(diǎn)坐標(biāo)的方法,會利用兩直線垂直時斜率乘積等于-1解題的能力,會根據(jù)一個點(diǎn)和斜率寫出直線一般式方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-my+1=0與l2:x+(m-1)y-1=0,則“m=2”是“l(fā)1⊥l2”的( 。
A、充分不必要條件B、必要不充分條件C、充分且必要條件D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-λy=0,l2是過定點(diǎn)A(0,2),且與向量
a
=(1,-
λ
2
)平行的直線,則l1與l2交點(diǎn)P的軌跡方程是
x2+(y-1)2=1
x2+(y-1)2=1
,軌跡是
以(0,1)為圓心、1為半徑的圓
以(0,1)為圓心、1為半徑的圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x+y=0,直線l2:x+y-2=0和直線l3:3x+4y+5=0.
(1)求直線l1和直線l2交點(diǎn)C的坐標(biāo);
(2)求以C點(diǎn)為圓心,且與直線l3相切的圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線L過點(diǎn)P(0,1),夾在兩已知直線l1:2x+y-8=0和l2:x-3y+10=0之間的線段AB恰被點(diǎn)P平分.
(1)求直線l的方程;
(2)設(shè)點(diǎn)D(0,m),且AD∥l1,求:△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-y+3=0和直線l2:x+y-9=0
(1)求這兩條直線的交點(diǎn)p;
(2)求經(jīng)過點(diǎn)p和原點(diǎn)的直線方程;
(3)求經(jīng)過點(diǎn)p且與直線l1垂直的直線方程.

查看答案和解析>>

同步練習(xí)冊答案