16.自點 A(-3,4)作圓(x-2)2+(y-3)2=1的切線,則A到切點的距離為( 。
A.$\sqrt{5}$B.3C.$\sqrt{10}$D.5

分析 求出圓心和半徑,求出AC的值,可得切線的長.

解答 解:圓(x-2)2+(y-3)2=1,表示以C(2,3)為圓心,以r=1為半徑的圓.
由于AC=$\sqrt{26}$,故切線的長為$\sqrt{26-1}$=5,
故選D.

點評 本題主要考查直線和圓的位置關(guān)系,求圓的切線長度的方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用分析法證明:欲證①A>B,只需證②C<D,這里②是①的( 。
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.cos$(\frac{-13π}{4})$的值為( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}滿足:${a_1}=\frac{1}{2},2{a_3}={a_2}$
(1)求數(shù)列{an}的通項公式;
(2)若等差數(shù)列{bn}的前n項和為Sn,滿足b1=1,S3=b2+4,求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=1+2sin(2x-\frac{π}{3})$.
(1)用五點法作圖作出f(x)在x∈[0,π]的圖象;
(2)求f(x)在$x∈[\frac{π}{4},\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sin2x,將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位,再向上平移$\frac{\sqrt{3}}{2}$個單位移,得到函數(shù)g(x)的圖象,則當(dāng)x∈[0,$\frac{π}{2}$]時,函數(shù)g(x)的值域為(  )
A.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]B.[-$\frac{\sqrt{3}}{2}$,1]C.[0,1+$\frac{\sqrt{3}}{2}$]D.[0,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“a>$\frac{1}{4}$”是“關(guān)于x的不等式ax2-x+1>0恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a,b為實數(shù),則“a5<b5”是“2a<2b”的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x2+x-2<0},$B=\left\{{x|{{log}_{\frac{1}{2}}}x>1}\right\}$,則A∩B=( 。
A.$(0,\frac{1}{2})$B.(0,1)C.$(-2,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

同步練習(xí)冊答案