一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為1的兩個全等的等腰直角三角形,則該幾何體的外接球的表面積為( 。
A、πB、2πC、3πD、4π
考點(diǎn):由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:根據(jù)幾何體的三視圖,得該幾何體為一直四棱錐,畫出直觀圖,求出該四棱錐的外接球的直徑即可.
解答: 解:根據(jù)幾何體的三視圖,得該幾何體為一直四棱錐,其直觀圖如圖所示;

∵正視圖和側(cè)視圖是腰長為1的兩個全等的等腰直角三角形,
∴四棱錐的底面是正方形,且邊長為1,其中一條側(cè)棱SA⊥底面ABCD且棱長SA=1,
∴四棱錐的側(cè)棱SB=SD=
2
,
∴四棱錐的側(cè)棱SC滿足SC2=SA2+AB2+AD2=12+12+12=3,
∴該幾何體的外接球的直徑為2R=SC,
它的表面積為4πR2=πSC2=3π.
故選:C.
點(diǎn)評:本題考查了利用空間幾何體的三視圖求幾何體外接圓的表面積的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,若cosC=
3
2
,求:
(Ⅰ)角C的度數(shù);
(Ⅱ)若a=2,b=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=sinxcosx是(  )
A、最小正周期為π的奇函數(shù)
B、最小正周期2π為的偶函數(shù)
C、最小正周期2π為的奇函數(shù)
D、最小正周期π為的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知集合M={(x,y)|2x+y=0},N={y|y=x2+1},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
-
2
x
x<0
3+log2x,x>0
,則f(f(-1))等于(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
x+2
(x>0),且f1(x)=f(x)=
x
x+2
,當(dāng)n∈N*且n≥2時,fn(x)=f[fn-1(x)],則f3(x)=
 
,猜想fn(x)(n∈N*)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)m+(m-3)i是純虛數(shù),則實(shí)數(shù)m的值為( 。
A、3B、0C、2D、3或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

凼數(shù)y=
x-3
x+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的表面積為8π,則它的半徑為( 。
A、
2
2
B、1
C、
2
D、2

查看答案和解析>>

同步練習(xí)冊答案