直線和圓相交于點(diǎn)A、B,則AB的垂直平分線方程是               
本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。
研究直線與圓的相交弦問題,那么聯(lián)立方程組可知,得到關(guān)于x的一元二次方程
,
那么結(jié)合韋達(dá)定理得到A(-1,0),B(,),因此可知AB的斜率為,而其中垂線的斜率是其的負(fù)倒數(shù),故垂直平分線的斜率為,AB的中點(diǎn)為,然后利用點(diǎn)斜式表示出方程為。
解決該試題的關(guān)鍵是利用直線與圓的方程聯(lián)立方程組,結(jié)合韋達(dá)定理得到AB的中點(diǎn)坐標(biāo),利用直線的垂直關(guān)系得到AB的垂直平分線的斜率,得到方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,已知C、F是以AB為直徑的半圓上的兩點(diǎn),且CFCB,過CCD^AFAF的延長線與點(diǎn)D

(Ⅰ)證明:CD為圓O的切線;
(Ⅱ)若AD=3,AB=4,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果圓上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為則實(shí)數(shù)的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與圓相切,則,滿足的關(guān)系式為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線C1的方程;
(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于
點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù),求直線與圓有公共點(diǎn)的概率為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從點(diǎn)向圓C:引切線,則切線長的最小值為(    )
A.B.C.D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C的方程為,點(diǎn)A,直線
(1)求與圓C相切,且與直線垂直的直線方程;
(2)O為坐標(biāo)原點(diǎn),在直線OA上是否存在異于A點(diǎn)的B點(diǎn),使得為常數(shù),若存在,求出點(diǎn)B,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)定點(diǎn)M,動(dòng)點(diǎn)N在圓上運(yùn)動(dòng),線段MN的
中點(diǎn)為點(diǎn)P.
(1)求MN的中點(diǎn)P的軌跡方程;
(2)直線與點(diǎn)P的軌跡相切,且軸.軸上的截距相等,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案