17.已知雙曲線$\frac{x^2}{m}-{y^2}=1$的一個頂點坐標為(2,0),則此雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±2xD.$y=±\frac{1}{2}x$

分析 雙曲線$\frac{x^2}{m}-{y^2}=1$的一個頂點坐標為(2,0),可得m=4,即可得到雙曲線的漸近線方程.

解答 解:∵雙曲線$\frac{x^2}{m}-{y^2}=1$的一個頂點坐標為(2,0),∴m=4,
∴雙曲線的漸近線方程為y=±$\frac{1}{2}x$.
故選D.

點評 本題考查雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為1的正方體,兩條虛線互相垂直,則該幾何體的體積是(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$1-\frac{π}{6}$D.$1-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.從正五邊形的5個頂點中隨機選擇3個頂點,則以它們作為頂點的三角形是銳角三角形的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列說法正確的是( 。
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分條件
B.已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,則p∧(¬q)是真命題
C.命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0”
D.從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是分成抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.數(shù)列{an}的前n項和是Sn,且Sn+$\frac{1}{2}$an=1,數(shù)列{bn},{cn}滿足bn=log3$\frac{{{a}_{n}}^{2}}{4}$,cn=$\frac{1}{_{n}_{n+2}}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{cn}的前n項和為Tn,若不等式Tn<m對任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知拋物線C:y2=8x的焦點為F,P為C的準線上一點,Q(在第一象限)是直線PF與C的一個交點,若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則QF的長為( 。
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在三棱柱ABC-A1B1C1中,△ABC是邊長為2的正三角形,側(cè)面BB1C1C為矩形,D,E,F(xiàn)分別是線段BB1,AC1,A1C1的中點.
(1)求證:DE∥平面A1B1C1;
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱錐C-AC1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如表:
組別PM2.5濃度
(微克/立方米)
頻數(shù)(天)頻率
 第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100]20.1
(1)將這20天的測量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求圖4中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(2)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標準的天數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若A(6,-1,4),B(1,-2,1),C(4,2,3),則△ABC的形狀是(  )
A.不等邊銳角三角形B.直角三角形
C.鈍角三角形D.等邊三角形

查看答案和解析>>

同步練習冊答案