若等差數(shù)列的前n項(xiàng)和分別為,若對(duì)一切正整數(shù)n都有=,則的值為      .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在R上的單調(diào)函數(shù),存在實(shí)數(shù),使得對(duì)于任意實(shí)數(shù),總有恒成立。
(Ⅰ)求的值;
(Ⅱ)若,且對(duì)任意正整數(shù),有, ,求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若數(shù)列{bn}滿足,將數(shù)列{bn}的項(xiàng)重新組合成新數(shù)列,具體法則如下:……,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是數(shù)列的前n項(xiàng)和,滿足關(guān)系式,
n≥2,n為正整數(shù)).
(1)令,證明:數(shù)列是等差數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)對(duì)于數(shù)列,若存在常數(shù)M>0,對(duì)任意的,恒有
M成立,稱數(shù)列為“差絕對(duì)和有界數(shù)列”,
證明:數(shù)列為“差絕對(duì)和有界數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有
(Ⅲ)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等差數(shù)列中,,其中是數(shù)列的前項(xiàng)之和,曲線的方程是,直線的方程是
(1)      求數(shù)列的通項(xiàng)公式;
(2)   當(dāng)直線與曲線相交于不同的兩點(diǎn)時(shí),令
的最小值;
(3)   對(duì)于直線和直線外的一點(diǎn)P,用“上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個(gè)橢圓,求出該橢圓與直線的“距離”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{a}中,a=2,前n項(xiàng)和為S,且S=.
(1)證明數(shù)列{an+1-an}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=,數(shù)列{bn}的前n項(xiàng)和為Tn,求使不等式Tn>
對(duì)一切n∈N*都成立的最大正整數(shù)k的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的前n項(xiàng)和,.
(1)當(dāng)取得最大值時(shí),求;(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的公差為2,前項(xiàng)和為,則下列結(jié)論中正確的是     (  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}的通項(xiàng)公式是an=1-2n,其前n項(xiàng)和為Sn,則數(shù)列{}的前11項(xiàng)和為 ()
A.-45B.-50C.-55D.-66

查看答案和解析>>

同步練習(xí)冊(cè)答案