雙曲線
y2
4
-
x2
2
=1的漸近線方程為(  )
A、y=±
2
x
B、y=±2x
C、y=±
2
2
x
D、y=±
1
2
x
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的漸近線方程為y=±
a
b
x,且雙曲線
y2
4
-
x2
2
=1的a=2,b=
2
,即可得到所求漸近線方程.
解答: 解:由雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的漸近線方程為y=±
a
b
x,
且雙曲線
y2
4
-
x2
2
=1的a=2,b=
2
,即有漸近線方程為
y=±
2
2
x,即y=±
2
x.
故選A.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),記熟雙曲線的漸近線方程是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓Γ1和拋物線Γ2有相同的焦點(diǎn)(1,0),橢圓Γ1的離心率為
1
2
,拋物線Γ2的頂點(diǎn)為原點(diǎn).
(Ⅰ) 求橢圓Γ1和拋物線Γ2的方程;
(Ⅱ) 設(shè)點(diǎn)P為拋物線Γ2準(zhǔn)線上的任意一點(diǎn),過點(diǎn)P作拋物線Γ2的兩條切線PA,PB,其中A,B為切點(diǎn).
(ⅰ)設(shè)直線PA,PB的斜率分別為k1,k2,求證:k1k2為定值;
(ⅱ)若直線AB交橢圓Γ1于C,D兩點(diǎn),S△PAB,S△PCD分別是△PAB,△PCD的面積,試問:
S△PAB
S△PCD
是否有最小值?若有,求出最小值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意x,y∈R,|x-1|+|x|+|y-1|+|x+1|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4…).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:對(duì)一切n∈N*,有
n
k=1
ak2
7
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和sn,且s4=16,a4=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知X={x|x=2n+1,n∈Z},Y={y|y=4k±1,k∈Z},那么下列各式正確的是( 。
A、X?YB、Y?X
C、X=YD、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市持續(xù)性的霧霾天氣嚴(yán)重威脅著人們的身體健康,汽車的尾氣排放是造成霧霾天氣的重要因素之一,為此該城市實(shí)施了機(jī)動(dòng)車尾號(hào)限行政策.現(xiàn)有家報(bào)社想調(diào)查了解該市區(qū)公民對(duì)“車輛限行”的態(tài)度,并在該城市里隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻  數(shù)24201455
支持的人數(shù)13151144
(1)請(qǐng)估計(jì)該市公民對(duì)“車輛限行”的支持率(答案用百分比表示);
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中采用分層抽樣選取3人進(jìn)行跟蹤調(diào)查,求選取的3人中有2人不支持“車輛限行”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx+
3
cosωx的最小正周期為π,x∈R,ω>0是常數(shù).
(1)求ω的值;
(2)若f(
θ
2
+
π
12
)=
6
5
,θ∈(0,
π
2
),求sin2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2 an+2n求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案