15.若a,b,c∈R,且a>b,則下列不等式一定成立的是( 。
A.a+c>b-cB.ac>bcC.a2>b2D.(a-b)c2≥0

分析 利用不等式的基本性質(zhì),直接寫出結(jié)果即可.

解答 解:a,b,c∈R,且a>b,可得a-b>0,
c2≥0,
可得(a-b)c2≥0.
故選:D.

點(diǎn)評(píng) 本題考查不等式的簡(jiǎn)單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:實(shí)數(shù)m使函數(shù)f(x)=$\frac{1}{3}$x3-(m-1)x2-4mx+1在[1,3]上不單調(diào),命題q:實(shí)數(shù)m滿足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示橢圓.
(1)若p∧q為真,求m的取值范圍;
(2)若p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一年級(jí)有四個(gè)班,其中一、二班為數(shù)學(xué)課改班,三、四班為數(shù)學(xué)非課改班.在期末考試中,課改班與非課改班的數(shù)學(xué)成績(jī)優(yōu)秀與非優(yōu)秀人數(shù)統(tǒng)計(jì)如下表.
優(yōu)秀非優(yōu)秀總計(jì)
課改班a50b
非課改班20c110
合計(jì)de210
(Ⅰ)求d的值為多少?若采用分層抽樣的方法從課改班的學(xué)生中隨機(jī)抽取4人,則數(shù)學(xué)成績(jī)優(yōu)秀和數(shù)學(xué)成績(jī)非優(yōu)秀抽取的人數(shù)分別是多少?
(Ⅱ)在(Ⅰ)的條件下抽取的4人中,再?gòu)闹须S機(jī)抽取2人,求兩人數(shù)學(xué)成績(jī)都優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=x+ax2+blnx的圖象在點(diǎn)P(1,0)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2對(duì)任意正實(shí)數(shù)x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{5}}{_{6}}$=$\frac{9}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,在三棱錐A-OBC中,OA,OB,OC兩兩垂直且長(zhǎng)度都為2,則這個(gè)三棱錐的體積為$\frac{4}{3}$;O到平面ABC的距離為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下列結(jié)論,正確的個(gè)數(shù)是( 。
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,Sn=a($\frac{1}{4}$)n-1+6且,則a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知P1(2,-1),P2(0,5),點(diǎn)P在P1P2的延長(zhǎng)線上,且|$\overrightarrow{{P}_{1}P}$|=3|$\overrightarrow{P{P}_{2}}$|,則點(diǎn)P的坐標(biāo)為( 。
A.(1,2)B.($\frac{4}{3}$,3)C.($\frac{2}{3}$,3)D.(-1,8)

查看答案和解析>>

同步練習(xí)冊(cè)答案