已知橢圓的短軸長為4,焦點是(0,2)和(0,-2),則橢圓方程為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:根據(jù)題意可知橢圓中的b和c,進而求得a,根據(jù)焦點坐標判斷橢圓的長軸在y軸,進而可得橢圓的方程.
解答:依題意可知b=2,c=2,則a==2,
根據(jù)焦點坐標可知橢圓的長軸在y軸上,則橢圓方程為
故選C
點評:本題主要考查了橢圓的標準方程.屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的短軸長為4,焦點是(0,2)和(0,-2),則橢圓方程為( 。
A、
x2
8
+
y2
4
=1
B、
x2
20
+
y2
16
=1
C、
x2
4
+
y2
8
=1
D、
x2
16
+
y2
20
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為4,F(xiàn)1,F(xiàn)2分別是橢圓C的左,右焦點,直線y=x與橢圓C在第一象限內的交點為A,△AF1F2的面積為2
6
,點P(x0,y0)是橢圓C上的動點
(1)求橢圓C的方程
(2)若∠F1PF2為鈍角,求點P的橫坐標x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年江蘇省蘇州市(五市三區(qū))高二(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知橢圓的短軸長為4,F(xiàn)1,F(xiàn)2分別是橢圓C的左,右焦點,直線y=x與橢圓C在第一象限內的交點為A,△AF1F2的面積為,點P(x,y)是橢圓C上的動點
(1)求橢圓C的方程
(2)若∠F1PF2為鈍角,求點P的橫坐標x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省鞍山一中高考數(shù)學六模試卷(理科)(解析版) 題型:選擇題

已知橢圓的短軸長為4,焦點是(0,2)和(0,-2),則橢圓方程為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案