一個(gè)棱長(zhǎng)為1的正方形的頂點(diǎn)都在球面上,則這個(gè)球面的表面積是(  )
A、πB、3πC、4πD、12π
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:設(shè)出正方體的棱長(zhǎng),求出正方體的體對(duì)角線的長(zhǎng),就是球的直徑,求出球的表面積即可.
解答: 解:設(shè)正方體的棱長(zhǎng)為:1,正方體的體對(duì)角線的長(zhǎng)為:
3
,就是球的直徑,
∴球的表面積為:S2=4π(
3
2
2=3π.
故選:B.
點(diǎn)評(píng):本題考查球的表面積,正方體的外接球的知識(shí),仔細(xì)分析,找出二者之間的關(guān)系:正方體的對(duì)角線就是球的直徑,是解題關(guān)鍵,本題考查轉(zhuǎn)化思想,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A具有以下性質(zhì):
(1)0∈A,1∈A;
(2)若x∈A,y∈A,則x-y∈A,且x≠0時(shí),
1
x
∈A,則稱集合A是“好集”,下列命題正確的個(gè)數(shù)是( 。
①集合B=(-1,0,1)是“好集”;
②有理數(shù)集Q是“好集”;
③設(shè)集合A是“好集”,若x∈A,y∈A,則x+y∈A.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|sinα|=
(
1
cos2α
-1)(1-sin2α)
,這種說(shuō)法
 
.(填“正確”或“錯(cuò)誤”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是等差數(shù)列,若a3,a7+7,a11+14構(gòu)成公比為q的等比數(shù)列,則q=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a6=6+a7,則S9的值是( 。
A、18B、36C、54D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正三棱錐的棱長(zhǎng)為6cm,求它的內(nèi)切球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)實(shí)數(shù)a,b變化時(shí),直線(2a+b)x+(a+b)y+(a-b)=0與直線m2x+2y-n2=0過(guò)同一個(gè)定點(diǎn),記點(diǎn)(m,n)的軌跡為曲線C,P為曲線C上任意一點(diǎn),若點(diǎn)Q(1,0),則PQ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):R(x)=
400x-
1
2
x2,0≤x≤400
80000,x>400
,其中x是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))
(1)將利潤(rùn)x表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求平行與直線3x+3y+5=0且被圓x2+y2=20截得長(zhǎng)為6
2
的弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案