將邊長(zhǎng)為1的正方形ABCD,沿對(duì)角線AC折起,使BD=.則三棱錐D-ABC的體積為(  )

 A.            B.            C.          D.

 

【答案】

B.

【解析】

試題分析:取AC的中點(diǎn)M,連接DM,BM,則,

所以AC平面PMB,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314442735529994/SYS201301131444501677919736_DA.files/image003.png">,

所以.

考點(diǎn):線面垂直的判定,三棱錐的體積公式.

點(diǎn)評(píng):本小題屬于平面圖形的翻折問題,要注意翻折前后哪此量發(fā)生了變化,哪些量沒發(fā)生變化,沒變化的量一般要在平面圖形中求解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線BD折起,使得點(diǎn)A到點(diǎn)A′的位置,且A′C=1,則折起后二面角A′-DC-B的大小( 。
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線BD折成直二面角,若點(diǎn)P滿足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|2的值為(  )
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①面DBC是等邊三角形;  ②AC⊥BD;  ③三棱錐D-ABC的體積是
2
6

其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線BD折起成直二面角A-BD-C,則在這個(gè)直二面角A-BD-C中點(diǎn)A到直線BC的距離是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案