已知函數(shù)f(x)=2sin(ωx+φ),x∈R(其中ω>0,0<φ<
π
2
)的圖象上一個(gè)點(diǎn)為M(
8
,-2),相鄰兩條對(duì)稱軸之間的距離為
π
2

(1)求f(x)的解析式;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值.
(2)(2)由 2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
求得 x的范圍,可得f(x)的單調(diào)遞增區(qū)間.再結(jié)合x∈[0,π],可得結(jié)論.
解答: 20.解:(1)相鄰兩條對(duì)稱軸之間的距離為
π
2
,即T=π=
ω
,∴ω=2.
根據(jù) M(
8
,-2)在圖象上得:2sin(2×
8
+φ)=-2,∴
4
+φ=2kπ+
2
,k∈z.
故φ=2kπ+
π
4

結(jié)合0<φ<
π
2
,可得φ=
π
4
,∴函數(shù)f(x)=2sin(2x+
π
4
).
(2)由 2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
 得 kπ-
8
≤x≤kπ+
π
8
,k∈z,
故函數(shù)的增區(qū)間為[kπ-
8
,kπ+
π
8
],k∈z.
再結(jié)合x∈[0,π],可得增區(qū)間為[0,
π
8
]、[
8
,π].
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4.1:幾何證明選講
如圖所示,己知D為△ABC的BC邊上一點(diǎn),⊙O1經(jīng)過(guò)點(diǎn)B,D,交AB于另一點(diǎn)E⊙O2經(jīng)過(guò)點(diǎn)C,D,交AC于另一點(diǎn)F,⊙O1與⊙O2的另一交點(diǎn)為G
(Ⅰ)求證:A、E、G、F四點(diǎn)共圓
(Ⅱ)若AG切⊙O2于G,求證:∠AEF=∠ACG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex
xex+1

(1)證明:0<f(x)≤1;
(2)當(dāng)x>0時(shí),f(x)>
1
ax2+1
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
ax
x+1
,當(dāng)a≥0時(shí),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在單位圓中,已知α、β是坐標(biāo)平面內(nèi)的任意兩個(gè)角,且0≤α-β≤π,
請(qǐng)寫出兩角差的余弦公式并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次數(shù)學(xué)測(cè)驗(yàn)后,教師對(duì)選答題的選題情況進(jìn)行了統(tǒng)計(jì),如表:(單位:人)
幾何證明選講 坐標(biāo)系與參數(shù)方程 不等式選講 合計(jì)
男同學(xué) 12 4 6 22
女同學(xué) 0 8 12 20
合計(jì) 12 12 18 42
在統(tǒng)計(jì)結(jié)果中,如果把《幾何證明選講》和《坐標(biāo)系與參數(shù)方程》稱為幾何類,把《不等式選講》稱為代數(shù)類,請(qǐng)列出如下2×2列表:(單位:人)
幾何類 代數(shù)類 總計(jì)
男同學(xué)
女同學(xué)
總計(jì)
據(jù)此判斷是否有95%的把握認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,A,B分別是單位圓與x軸、y軸正半軸的交點(diǎn),點(diǎn)P在單位圓上,∠AOP=θ(0<θ<π),C點(diǎn)坐標(biāo)為(-2,0),平行四邊形OAQP的面積為S.
(1)求
OA
OQ
+S的最大值;
(2)若CB∥OP,求sin(2θ-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB=AC,點(diǎn)D為BC中點(diǎn),點(diǎn)E在線段B1C1上.
(1)求證:平面ADC1⊥平面BCC1B1
(2)若A1E∥平面ADC1,求證:E為線段B1C1的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={
1
2i
,i2,|5i2|,
(1+i)2
i
,-
i2
2
},則集合A∩R+(R+表示大于0的實(shí)數(shù))的子集個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案