16.P是長、寬、高分別為12,3,4的長方形外接球表面上一動點,設(shè)P到長方體各個面所在平面的距離為d,則d的取值范圍是[0,$\frac{25}{2}$].

分析 利用長方體的對角線長等于長方體外接球的直徑,可得長方體外接球的半徑,計算寬、高分別為3,4的長方形的對角線長為5,球心到該面的距離為$\sqrt{\frac{169}{4}-\frac{25}{4}}$=6,即可求出d的取值范圍.

解答 解:由題意,長方體的對角線長為$\sqrt{144+9+16}$=13,等于長方體外接球的直徑,則長方體外接球的半徑為$\frac{13}{2}$,寬、高分別為3,4的長方形的對角線長為5,球心到該面的距離為$\sqrt{\frac{169}{4}-\frac{25}{4}}$=6,
∵P到長方體各個面所在平面的距離為d,
∴d的最小值為0,最大值為6+$\frac{13}{2}$=$\frac{25}{2}$,
∴d的取值范圍是[0,$\frac{25}{2}$].
故答案為:[0,$\frac{25}{2}$].

點評 本題考查長方體外接球,考查P到長方體各個面所在平面的距離,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè){an}是公差不為0的等差數(shù)列,已知a1=2,且a1,a2,a4成等比數(shù)列.
(1)求{an}的通項公式;
(2)設(shè)bn=an+1,數(shù)列{bn}前n項和為Sn,求數(shù)列$\{\frac{1}{S_n}\}$的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某城市理論預(yù)測2014年到2018年人口總數(shù)y (單位:十萬)與年份(用2014+x表示)的關(guān)系如表所示:
年份中的x01234
人口總數(shù)y5781119
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程$\stackrel{∧}{y}$=bx+a;
(3)據(jù)此估計2019年該城市人口總數(shù).
(參考數(shù)據(jù):0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)
參考公式:線性回歸方程為$\hat y=bx+a$,其中 $b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知半徑為$\frac{2\sqrt{3}}{3}$的球內(nèi)接一個圓錐,圓錐的軸截面SAB是等邊三角形,O1為圓錐底面直徑AB的中點,O為球心,動點P在圓錐底面內(nèi)(包括圓周)運動,若AO⊥OP,則點P形成的軌跡的長度為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),數(shù)列{an}滿足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2
(1)求數(shù)列{an}的通項公式;
(2)對n∈N*,設(shè)Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$,若Sn≥$\frac{3t}{4n}$恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知Sn是數(shù)列{$\frac{n}{{2}^{n-1}}$}的前n項和,若不等式|λ+1|<Sn+$\frac{n}{{2}^{n-1}}$對一切n∈N*恒成立,則λ的取值范圍是-3<λ<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列.
(1)設(shè)a1=1,a4=8.
①若$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2n}}$=M($\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$),n∈N*,求實數(shù)M的值;
②若在$\frac{1}{{a}_{1}}$與$\frac{1}{{a}_{4}}$中插入k個數(shù)b1,b2,…,bk,使$\frac{1}{{a}_{1}}$,b1,b2,…,bk,$\frac{1}{{a}_{4}}$,$\frac{1}{{a}_{5}}$成等差數(shù)列,求這k個數(shù)的和Sk
(2)若一個數(shù)列{cn}的所有項都是另一個數(shù)列{dn}中的項,則稱{cn}是{dn}的子數(shù)列,已知數(shù)列{bn}是公差不為0的等差數(shù)列,b1=a1,b2=a2,bm=a3,其中m是某個正整數(shù),且m≥3,求證:數(shù)列{an}是{bn}的子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…(x6,y6)的散點圖中,若所有樣本點(xi,yi)(i=1,2,…,6)都在曲線y=bx2-1附近波動.經(jīng)計算$\sum_{i=1}^{6}$xi=11,$\sum_{i=1}^{6}$yi=13,$\sum_{i=1}^{6}$xi2=21,則實數(shù)b的值為$\frac{19}{21}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某程序框圖如圖所示,若輸入x的值為1,則輸出y的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案