1,(1+3)(1+3+5),(1+3+5+7),…為給定的數(shù)列前四項(xiàng),則其通項(xiàng)公式an可表示為(。

An2              B(n+1)2-3         C         D

答案:A
提示:

代數(shù)值檢驗(yàn)。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
3
5
,an+1=
3an
2an+1
,n=1,2,…

(1)求證:數(shù)列{
1
an
-1}
為等比數(shù)列;
(2)記Sn=
1
a1
+
1
a2
+…
1
an
,若Sn<100,求最大的正整數(shù)n.
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列且am-1,as-1,an-1成等比數(shù)列,如果存在,請(qǐng)給出證明;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①直線l的方向向量為
a
=(1,-1,2),直線m的方向向量為
b
=(2,1,-
1
2
)則l⊥m
②直線l的方向向量為
a
=(0,1,-1),平面α的法向量為
n
=(1,-1,-1),l?α則l⊥α.
③平面α,β的法向量分別為
n1
=(0,1,3),
n2
=(1,0,2),則α∥β.
④平面α經(jīng)過(guò)三點(diǎn)A(1,0,-1),B(0,1,0),C(-1,2,0),向量
n
=(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:1;1-4;1-4+9;1-4+9-16…各項(xiàng)的值,可以猜測(cè):n∈N*,1-4+9-16+…+(-1)n+1n2=
1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)
1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列表格,探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的性質(zhì),
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.
當(dāng)x=
2
2
時(shí),y最小=
4
4

(2)證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)遞減.
(3)函數(shù)f(x)=x+
4
x
(x<0)
時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)選修數(shù)學(xué)-4-5人教A版 人教A版 題型:013

從1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,歸納出

[  ]
A.

1-4+9-16+…+(-n)2=(-1)n-1·

B.

1-4+9-16+…+(-1)n+1n2=(-1)n-1·

C.

1-4+9-16+…+(-1)nn2=(-1)n-1·

D.

1-4+9-16+…+(-1)n-1·n2=(-1)n·

查看答案和解析>>

同步練習(xí)冊(cè)答案