已知橢圓的離心率為,其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且(O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)且斜率為k的動(dòng)直線(xiàn)l交橢圓于A(yíng)、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出M的坐標(biāo)和△MAB面積的最大值;若不存在,說(shuō)明理由.
【答案】分析:(1)設(shè)P(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),由;由.所以c=1,由此能求出橢圓的方程.
(2)動(dòng)直線(xiàn)l的方程為,由.設(shè)A(x1,y1),B(x2,y2).則.由此入手能求出當(dāng)且僅當(dāng)時(shí),△MAB面積的最大值.
解答:解:(1)設(shè)P(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),
則由;
,

所以c=1…(2分)
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124541205559608/SYS201310251245412055596021_DA/13.png">,所以a2=2,b2=1.…(3分)
因此所求橢圓的方程為.…(4分)
(2)動(dòng)直線(xiàn)l的方程為,


設(shè)A(x1,y1),B(x2,y2).
.…(6分)
假設(shè)在y上存在定點(diǎn)M(0,m),滿(mǎn)足題設(shè),

=
=
=
=
由假設(shè)得對(duì)于任意的恒成立,
,
解得m=1.
故在y軸上存在定點(diǎn)M(0,1),
使得以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)…(10分)
這時(shí),點(diǎn)M到AB的距離,


設(shè)2k2+1=t,
,

所以
當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立.
因此,△MAB面積的最大值是.…(13分)
點(diǎn)評(píng):通過(guò)幾何量的轉(zhuǎn)化考查用待定系數(shù)法求曲線(xiàn)方程的能力,通過(guò)直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系處理,考查學(xué)生的運(yùn)算能力.通過(guò)向量與幾何問(wèn)題的綜合,考查學(xué)生分析轉(zhuǎn)化問(wèn)題的能力,探究研究問(wèn)題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想.本題有一定的探索性.綜合性強(qiáng),難度大,易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線(xiàn)C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線(xiàn)和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線(xiàn)l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線(xiàn)l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線(xiàn)方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開(kāi)家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開(kāi)家前能得到報(bào)紙(稱(chēng)為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A(yíng),B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線(xiàn)l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線(xiàn)AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線(xiàn)PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案