【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A(yíng),B兩點(diǎn),過(guò)A作兩圓的切線(xiàn)分別交兩圓于C、D兩點(diǎn),連接DB并延長(zhǎng)交⊙O于點(diǎn)E.證明:

(1)ACBD=ADAB;
(2)AC=AE.

【答案】
(1)

證明:∵AC與⊙O'相切于點(diǎn)A,故∠CAB=∠ADB,

同理可得∠ACB=∠DAB,

∴△ACB∽△DAB,∴ = ,

∴ACBD=ADAB.


(2)

解:∵AD與⊙O相切于點(diǎn)A,∴∠AED=∠BAD,

又∠ADE=∠BDA,∴△EAD∽△ABD,

= ,∴AEBD=ADAB.

再由(1)的結(jié)論ACBD=ADAB 可得,AC=AE.


【解析】(1)利用圓的切線(xiàn)的性質(zhì)得∠CAB=∠ADB,∠ACB=∠DAB,從而有△ACB∽△DAB, = ,由此得到所證.(2)利用圓的切線(xiàn)的性質(zhì)得∠AED=∠BAD,又∠ADE=∠BDA,可得△EAD∽△ABD, = ,AEBD=ADAB,再結(jié)合(I)的結(jié)論ACBD=ADAB 可得,AC=AE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)分別為, ,且點(diǎn)在橢圓.

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)與橢圓相交于異于的不同兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)與曲線(xiàn)有且只有一個(gè)交點(diǎn),則b的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線(xiàn),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:
1)若α>β且α、β都是第一象限角,則tanα>tanβ;
2)“對(duì)任意x∈R,都有x2≥0”的否定為“存在x0∈R,使得 <0”;
3)已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則(p)∨q為真命題;
4)函數(shù) 是偶函數(shù).
其中真命題的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線(xiàn)PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線(xiàn)CM∥平面PBE,并說(shuō)明理由;

(II)若二面角P-CD-A的大小為45°,求直線(xiàn)PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體中,

求證:(1)

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體中,上一點(diǎn),的中點(diǎn),平面

(Ⅰ)求證:平面;

(Ⅱ)求與平面所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

查看答案和解析>>

同步練習(xí)冊(cè)答案