【題目】已知函數(shù)().
(1)若曲線在處的切線與直線平行,求的值;
(2)若對于任意且,都有恒成立,求的取值范圍.
(3)若對于任意,都有成立,求整數(shù)的最大值.
(其中為自然對數(shù)的底數(shù))
【答案】(1);(2);(3).
【解析】分析:(1)由題意得:,由題意可得,解得.
(2)因為,所以,
記,可知在上單調遞增.
所以在上恒成立,
即在上恒成立,記,即可求得的取值范圍.
(3)若對于任意,都有成立,
所以對于任意恒成立,
即對于任意恒成立,
令,利用導數(shù)研究函數(shù)的性質,即可得到整數(shù)的最大值.
詳解:
(1)由題意得:,
又曲線在處的切線與直線平行,
所以,解得.
(2)因為,所以,
記,又因為且,
所以在上單調遞增.
所以在上恒成立,
即在上恒成立,記,
所以,令,解得,
因為當時,,單調遞減,
當時,,單調遞增,
所以當時,取到最大值,
所以.
(3)若對于任意,都有成立,
所以對于任意恒成立,
即對于任意恒成立,
令,所以,
再令,所以在恒成立,
所以在上單調遞增,
又,,
所以必存在唯一的解,使得,
即,
所以當時,,單調遞減,
當時,,單調遞增,
所以,
因為,所以,
又因為,所以的最大整數(shù)為,
所以整數(shù)的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以O為極點,x軸的非負半軸為極軸且取相同的單位長度建立極坐標系.
(1)求圓C的極坐標方程;
(2)若直線l的極坐標方程是 ,射線 與圓C的交點為O、P,與直線l的交點為Q.求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某項“過關游戲”規(guī)則規(guī)定:在地關要拋擲顆骰子次,如果這次拋擲所出現(xiàn)的點數(shù)和大于,則算過關.
(Ⅰ)此游戲最多能過__________關.
(Ⅱ)連續(xù)通過第關、第關的概率是__________.
(Ⅲ)若直接挑戰(zhàn)第關,則通關的概率是__________.
(Ⅳ)若直接挑戰(zhàn)第關,則通關的概率是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ( ),若函數(shù)F(x)=f(x)﹣3的所有零點依次記為x1 , x2 , x3 , …,xn , 且x1<x2<x3<…<xn , 則x1+2x2+2x3+…+2xn﹣1+xn= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | |||||||
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | ||||||
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:
(2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩個企業(yè)的用電負荷量關于投產持續(xù)時間(單位:小時)的關系均近似地滿足函數(shù).
(1)根據(jù)圖象,求函數(shù)的解析式;
(2)為使任意時刻兩企業(yè)用電負荷量之和不超過,現(xiàn)采用錯峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時投產,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com