分析 (1)根據(jù)矩陣的坐標(biāo)變換,代入,列方程組,即可求得a和b的值,求得矩陣A,求得矩陣A的特征多項(xiàng)式f(λ),令f(λ)=0,求得特征值,根據(jù)特征值求得特征向量;
(2)令β=mα1+nα2,代入求得m和n的值,根據(jù)矩陣的乘法即可求得A20$\overrightarrow{β}$的值.
解答 解:(1)由題知$[\begin{array}{l}2\;\;a\\ b\;\;0\end{array}][\begin{array}{l}1\\ 1\end{array}]=[\begin{array}{l}3\\ 3\end{array}]$,即$\left\{\begin{array}{l}{2+a=3}\\{b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=3}\end{array}\right.$,
所以A=$[\begin{array}{l}{2}&{1}\\{3}&{0}\end{array}]$.…(2分)
矩陣A的特征多項(xiàng)式為f(λ)=$|\begin{array}{l}{λ-2}&{-1}\\{-3}&{λ}\end{array}|$=λ(λ-2)-3=0,
所以λ1=-1,λ2=3,設(shè)對(duì)應(yīng)的特征向量為α1=$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$,α2=$[\begin{array}{l}{{x}_{2}}\\{{y}_{2}}\end{array}]$.
由Aα1=λ1α1,Aα2=λ2α2,可得3x1+y1=0,x2-y2=0,
故屬于特征值λ1=-1的一個(gè)特征向量為α1=$[\begin{array}{l}{1}\\{-3}\end{array}]$,
屬于特征值λ2=3的一個(gè)特征向量為α2=$[\begin{array}{l}{1}\\{1}\end{array}]$.…(8分)
(2)令β=mα1+nα2,則$[\begin{array}{l}{5}\\{9}\end{array}]$=m$[\begin{array}{l}{1}\\{-3}\end{array}]$+n$[\begin{array}{l}{1}\\{1}\end{array}]$,
解得m=-1,n=6. …(10分)
所以${A^{20}}β={A^{20}}(-2{α_1}+3{α_2})=-1×({A^{20}}{α_1})+6×({A^{20}}{α_2})$,
=-1×(${λ}_{1}^{20}{α}_{1}$)+6×(${λ}_{2}^{20}$α2),
=-1×(-1)20×$[\begin{array}{l}{1}\\{-3}\end{array}]$+6×320×$[\begin{array}{l}{1}\\{2}\end{array}]$,
=$[\begin{array}{l}{2×{3}^{21}-1}\\{2×{3}^{21}+3}\end{array}]$.…(14分)
點(diǎn)評(píng) 本題考查矩陣的坐標(biāo)變換,考查矩陣特征和特征向量的求法,矩陣的乘法,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 0 | 1 | 2 | 3 | 4 |
y | 1 | 2 | 4 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com