已知點(diǎn)是圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),設(shè),則點(diǎn)的軌跡方程______________;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題8分,第(3)小題6分)
已知雙曲線的一個(gè)焦點(diǎn)是,且
(1)求雙曲線的方程;
(2)設(shè)經(jīng)過(guò)焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上.
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點(diǎn),問(wèn)是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)當(dāng)△AOB的面積為時(shí)(O為坐標(biāo)原點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)設(shè)圓,將曲線上每一點(diǎn)的縱坐標(biāo)壓縮到原來(lái)的,對(duì)應(yīng)的橫坐標(biāo)不變,得到曲線C.經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),交曲線C于A、B兩個(gè)不同點(diǎn).
(1)求曲線的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)我國(guó)計(jì)劃發(fā)射火星探測(cè)器,該探測(cè)器的運(yùn)行軌道是以火星(其半徑百公里)的中心為一個(gè)焦點(diǎn)的橢圓. 如圖,已知探測(cè)器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為百公里,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為800百公里. 假定探測(cè)器由近火星點(diǎn)第一次逆時(shí)針運(yùn)行到與軌道中心的距離為百公里時(shí)進(jìn)行變軌,其中分別為橢圓的長(zhǎng)半軸、短半軸的長(zhǎng),求此時(shí)探測(cè)器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知、,橢圓C的方程為,分別為橢圓C的兩個(gè)焦點(diǎn),設(shè)為橢圓C上一點(diǎn),存在以為圓心的外切、與內(nèi)切
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)作斜率為的直線與橢圓C相交于AB兩點(diǎn),與軸相交于點(diǎn)D,若
的值;
(Ⅲ)已知真命題:“如果點(diǎn)T()在橢圓上,那么過(guò)點(diǎn)T
的橢圓的切線方程為=1.”利用上述結(jié)論,解答下面問(wèn)題:
已知點(diǎn)Q是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作橢圓C的兩條切線QM、QN,
M、N為切點(diǎn),問(wèn)直線MN是否過(guò)定點(diǎn)?若是,請(qǐng)求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知拋物線為正常數(shù))的焦點(diǎn)為,過(guò)做一直線交拋物線,兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).
(1)若的面積記為,求的值;
(2)若直線垂直于軸,過(guò)點(diǎn)P做關(guān)于直線對(duì)稱的兩條直線,分別交拋物線C于M,N兩點(diǎn),證明:直線MN斜率等于拋物線在點(diǎn)Q處的切線斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4-1:幾何證明選講
△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于C,弦BD∥MN,AC、BD交于點(diǎn)E
(1)求證:△ABE≌△ACD
(2)AB=6,BC=4,求AE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,橢圓C:的右焦點(diǎn)為,直線的方程為,點(diǎn)A在直線上,線段AF交橢圓C于點(diǎn)B,若,則直線AF的傾斜角的大小為     

查看答案和解析>>

同步練習(xí)冊(cè)答案