精英家教網 > 高中數學 > 題目詳情

【題目】某公司在2019年新研發(fā)了一種設備,為測試其性能,從設備生產的流水線上隨機抽取30件零件作為樣本,測量其重量后,得到下表的相關數據.為了評判某臺設備的性能,從該設備加工的零件中任意抽取一件,記其重量為,并根據以下不等式進行評判(表示相應事件的概率):①;②;評判規(guī)則為:若同時滿足上述兩個不等式,則設備等級為;僅滿足其中一個,則等級為;若全部不滿足,則等級為.

經計算,樣本的平均值,標準差,以頻率值作為概率的估計值.

重量/

18

19

21

22

23

24

26

28

29

30

件數/個

1

1

2

2

6

8

5

2

1

2

1)試判斷設備的性能等級;

2)若的零件認為是次品,其余為非次品.30個樣本中次品個數為,現需要從中取出全部次品和2件非次品形成個小樣本,該公司從該小樣本中機抽取2件零件,求取出的兩件零件中恰有一件是次品的概率.

【答案】1;(2.

【解析】

1)利用條件,可得設備的重量僅滿足一個不等式,即可得出結論.

2)易知樣品中次品有3件,非次品2件,利用古典概型的概率計算公式即可求解.

1;

,

因為設備的重量僅滿足一個不等式,故其性能等級為.

2)易知樣品中滿足的次品有3件,則小樣本的個數為5

3件次品分別為,,,2件非次品分別為1,2

則可能的組合,共有10種,

滿足題意的組合為,,,6種,

故所求概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別是、,離心率,過點的直線交橢圓、兩點, 的周長為16.

(1)求橢圓的方程;

(2)已知為原點,圓 )與橢圓交于、兩點,點為橢圓上一動點,若直線軸分別交于、兩點,求證: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點,,是橢圓上任意三點,關于原點對稱且滿足.

(1)求橢圓的方程.

(2)若斜率為的直線與圓:相切,與橢圓相交于不同的兩點、,求時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,半徑為2切直線MN于點P,射線PKPN出發(fā)繞點P逆時針方向旋轉到PM,旋轉過程中,PK于點Q,設x,弓形PmQ的面積為,那么的圖象大致是  

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

1)若存在最大值,且,求實數的取值范圍;

2)令,,求證:對任意的,總存在最小值,且.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市創(chuàng)衛(wèi)辦為了了解該市開展創(chuàng)衛(wèi)活動的成效,對市民進行了一次創(chuàng)衛(wèi)滿意程度測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”計5分,“不合格”計0分,現隨機抽取部分市民的回答問卷,統計結果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數

6

24

1)求的值;

2)按照分層抽樣的方法,從評定等級為“合格”和“不合格”的問卷中隨機抽取10份進行問題跟蹤調研,現再從這10份問卷中任選4份,記所選4份問卷的量化總分為,求的分布列及數學期望;

3)某評估機構以指標,其中表示的方差)來評估該市創(chuàng)衛(wèi)活動的成效.,則認定創(chuàng)衛(wèi)活動是有效的;否則認為創(chuàng)衛(wèi)活動無效,應該調整創(chuàng)衛(wèi)活動方案.在(2)的條件下,判斷該市是否應該調整創(chuàng)衛(wèi)活動方案?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】由我國引領的5G時代已經到來,5G的發(fā)展將直接帶動包括運營、制造、服務在內的通信行業(yè)整體的快速發(fā)展,進而對GDP增長產生直接貢獻,并通過產業(yè)間的關聯效應和波及效應,間接帶動國民經濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經濟增加值.如圖是某單位結合近年數據,對今后幾年的5G經濟產出所做的預測.結合圖,下列說法不正確的是(

A.5G的發(fā)展帶動今后幾年的總經濟產出逐年增加

B.設備制造商的經濟產出前期增長較快,后期放緩

C.設備制造商在各年的總經濟產出中一直處于領先地位

D.信息服務商與運營商的經濟產出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.

(Ⅰ)求證:PO平面;

(Ⅱ)求平面EFG與平面所成銳二面角的大小;

(Ⅲ)線段上是否存在點,使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓經過點,離心率為.

1)求橢圓的方程;

2)過點作兩條互相垂直的弦分別與橢圓交于點,求點到直線距離的最大值.

查看答案和解析>>

同步練習冊答案