用數(shù)學(xué)歸納法證明12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1),從n=k到n=k+1時左邊增加的項數(shù)是


  1. A.
    1項
  2. B.
    2項
  3. C.
    3項
  4. D.
    4項
B
左邊增加兩項,為(2k+1)2-(2k+2)2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明
1
2
+cosα+cos3α+…+cos(2n-1)α=
sin
2n+1
2
a•cos
2n-1
2
a
sina
(k∈Z*,α≠kπ,n∈N+),在驗證n=1時,左邊計算所得的項是
1
2
+cosα
1
2
+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12
n(2n2+1)
3
時,由n=k的假設(shè)到證明n=k+1時,等式左邊應(yīng)添加的式子是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)
3
時,從“k到k+1”左邊需增加的代數(shù)式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)3
時,由n=k的假設(shè)到證明n=k+1時,等式左邊應(yīng)添加的式子是
(k+1)2+k2
(k+1)2+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明12+22+32+…+n2=
n(n+1)(2n+1)6
,(n∈N*

查看答案和解析>>

同步練習冊答案