已知函數(shù)

(1)當(dāng)時,討論函數(shù)的單調(diào)性:

(2)若函數(shù)的圖像上存在不同兩點,設(shè)線段的中點為,使得在點處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”。試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.

 

【答案】

(1)函數(shù)的遞增區(qū)間是,遞減區(qū)間是;(2)當(dāng)時,函數(shù)是“中值平衡函數(shù)”且函數(shù)的“中值平衡切線”有無數(shù)條,當(dāng)時,函數(shù)不是“中值平衡函數(shù)”.

【解析】

試題分析:(1)對進(jìn)行討論,求導(dǎo)數(shù),令導(dǎo)數(shù)大于0或小于0,求單調(diào)遞增或遞減區(qū)間;(2)先假設(shè)它是“中值平衡函數(shù)”, 設(shè)出兩點,討論的情況,看是否符合題意.

試題解析:(1)              1分

當(dāng)時,,函數(shù)在定義域上是增函數(shù);  2分

當(dāng)時,由得到,  4分

所以:當(dāng)時,函數(shù)的遞增區(qū)間是,遞減區(qū)間是;                            5分

當(dāng)時,由得到:,

所以:當(dāng)時,函數(shù)的遞增區(qū)間是,遞減區(qū)間是;  7分

(2)若函數(shù)是“中值平衡函數(shù)”,則存在)使得

,(*)                     4分

當(dāng)時,(*)對任意的都成立,所以函數(shù)是“中值平衡函數(shù)”,且函數(shù)的“中值平衡切線”有無數(shù)條;                    8分

當(dāng)時,設(shè),則方程在區(qū)間上有解,      10分

記函數(shù),則,       12分

所以當(dāng)時,,即方程在區(qū)間上無解,

即函數(shù)不是“中值平衡函數(shù)”.                     14分

考點:1.求切線的斜率;2.用導(dǎo)數(shù)求函數(shù)的單調(diào)性;3.分類討論思想.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

已知函數(shù)。

   (1):當(dāng)時,求函數(shù)的極小值;

   (2):試討論函數(shù)零點的個數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)的內(nèi)角的對應(yīng)邊分別為,且若向量與向量共線,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省東莞市第三次月考高一數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) 

(1)當(dāng)時,求函數(shù)的最大值和最小值;

(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測文科數(shù)學(xué)試卷 題型:解答題

已知函數(shù).().

  (1)當(dāng)時,求函數(shù)的極值;

(2)若對,有成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省高三上學(xué)期第二次教學(xué)質(zhì)量檢測文科數(shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)當(dāng)時,求的極小值;

(2)設(shè),求的最大值

 

查看答案和解析>>

同步練習(xí)冊答案