已知變量x,y滿足約束條件
x+4y-13≤0
x-2y-1≥0
kx+y-4≥0
,且有無窮多個(gè)點(diǎn)(x,y)使得目標(biāo)函數(shù)z=x+y取得最小值,則k=
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可確定目標(biāo)函數(shù)z=x+y取得最小值的等價(jià)條件.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
直線kx+y-4=0過定點(diǎn)(0,4),
由z=x+y得y=-x+z,平移直線y=-x+z,
要使有無窮多個(gè)點(diǎn)(x,y)使得目標(biāo)函數(shù)z=x+y取得最小值,
則目標(biāo)函數(shù)y=-x+z和直線kx+y-4=0平行,
即兩條直線的斜率相等即-k=-1,
解得k=1,
故答案為:1
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)在海撥xm處的大氣壓強(qiáng)是yPa,y與x之間的函數(shù)關(guān)系為y=cekx,其中c,k為常量,已知某天的海平面的大氣壓為1.01×105Pa,1000m高空的大氣壓為0.90×105Pa,求600m高空的大氣壓強(qiáng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,則z=
2i3
1+i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“sinA=sinB”是“A=B”的
 
條件.(填充要關(guān)系)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0
,則f(2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-y-k=0(k>0)與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn),且有|
OA
+
OB
|≥
3
3
|
AB
|,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|1≤x≤10,x∈N*},對于它的非空子集A,將A中每個(gè)元素k都乘以(-1)k后再求和,稱為A的非常元素和,比如A={1,3,6}的非常元素和為-1-3+6=2.那么集合M的所有非空子集的非常元素和的總和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域內(nèi)的任意實(shí)數(shù)x,函數(shù)f(x)=
x2+(a-1)x-2a+2
2x2+ax-2a
的值恒為正數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
a+i
1-i
(a∈R,i為虛數(shù)單位),若z為純虛數(shù),則a=( 。
A、-1B、0C、1D、2

查看答案和解析>>

同步練習(xí)冊答案