13.已知復(fù)數(shù)z=$\frac{1+2i}{{i}^{3}}$,則它的共軛復(fù)數(shù)$\overline{z}$=-2-i.

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,則它的共軛復(fù)數(shù)可求.

解答 解:z=$\frac{1+2i}{{i}^{3}}$=$\frac{1+2i}{-i}=\frac{i(1+2i)}{-i•i}=-2+i$,
則它的共軛復(fù)數(shù)$\overline{z}$=-2-i.
故答案為:-2-i.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在如圖所示的多面體ABCDE中,AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,$BC=\sqrt{5}$,F(xiàn)是CD的中點.
(Ⅰ)求證AF∥平面BCE;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=lg(x2+1)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,BC是圓O的直徑,點F在弧BC上,點A為劣弧$\widehat{BF}$的中點,作AD⊥BC于點D,BF與AD交于點E,與AC交于點G.
(1)求證:AE=BE;
(2)若圓O的半徑為5,AB=6,求AG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若關(guān)于x的方程x2+ax+4=0在區(qū)間[1,3]上有實數(shù)根,則實數(shù)a的取值范圍是[-5,-4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a>b>0})$右支上非頂點的一點A關(guān)于原點O的對稱點為B,F(xiàn)為其右焦點,若AF⊥FB,設(shè)∠ABF=θ且$θ∈({\frac{π}{12},\frac{π}{4}})$,則雙曲線離心率的取值范圍是( 。
A.$({\sqrt{2},2}]$B.$({1,\sqrt{2}}]$C.$({\sqrt{2},+∞})$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\sqrt{3}bcosC=csinB$;
(1)求角C;
(2)若$c=\sqrt{3}$,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從6雙不同的手套中任取4只,其中恰好有兩只是一雙的取法有( 。
A.120種B.240種C.255種D.300種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x),對?a,b,c∈R,f(a),f(b),f(c)為一個三角形的三邊長,則稱f(x)為“三角形函數(shù)”,已知函數(shù)f(x)=mcos2x+msinx+3是“三角形函數(shù)”,則實數(shù)m的取值范圍是( 。
A.(-$\frac{6}{7}$,$\frac{12}{13}$)B.[-2,$\frac{12}{13}$]C.[0,$\frac{12}{13}$]D.(-2,2)

查看答案和解析>>

同步練習(xí)冊答案