已知函數(shù)f(x)=x2-2ax+2,當(dāng)x0∈[1,+∞)時,恒有f(x0)>0,求實數(shù)a的取值范圍.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出二次函數(shù)f(x)的對稱軸x=a,所以討論a≤1和a>1兩種情況,根據(jù)二次函數(shù)的單調(diào)性或取得頂點情況求出f(x)在[1,+∞)的最小值,所以只要該最小值大于0即可,這樣便可求出實數(shù)a的取值范圍.
解答: 解:f(x)的對稱軸為x=a;
∴(1)a≤1時,f(x)在[1,+∞)上單調(diào)遞增;
∴f(x)在[1,+∞)上的最小值為f(1)=3-2a;
根據(jù)題意則有:3-2a>0,a<
3
2

∴此時a≤1;
(2)a>1時,f(x)在[1,+∞)上的最小值為f(a)=-a2+2;
∴便有-a2+2>0;
解得-
2
<a<
2

∴此時1<a<
2
;
綜上得實數(shù)a的取值范圍為(-∞,
2
).
點評:考查二次函數(shù)的對稱軸,二次函數(shù)的單調(diào)性,以及二次函數(shù)的頂點,二次函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的體積為V,D,E,F(xiàn),分別是棱SB,BC,SC的中點,三棱錐A-DEF體積為V1,則
V1
V
=( 。
A、
1
3
B、
1
4
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為(0,+∞),f(2)=1,且對任意的x1,x2∈(0,+∞),f(x)滿足:
①f(x1x2)=f(x1)+f(x2);
②當(dāng)x1≠x2時,x2f(x2)+x1f(x1)>x1f(x2)+x2f(x1
(1)求f(1),f(4),f(8)的值;
(2)若f(2x-5)≤3成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥DC,DB平分∠ADC,E為PC的中點,AD=CD=1,DB=2
2
,PD=2.
(1)證明:PA∥平面BDE;
(2)證明:AC⊥平面PBD;
(3)求三棱錐B-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點.
(1)證明:BD1⊥AC;
(2)證明:BD1∥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
,
b
滿足|
a
+
b
|=1,且
a
=2
b
,則|
b
|=(  )
A、
2
3
B、
1
3
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批發(fā)點1月份銷售商品情況如表:
商品名稱批發(fā)數(shù)量/件每件批發(fā)價/元每件成本價/元
A商品10003.02.5
B商品1500108
C商品120064
則該批發(fā)點A商品的批發(fā)利潤率為
 
;該批發(fā)點1月份的利潤為
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是公比大于零的等比數(shù)列,且a1=b1=2,a3=b3=8.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記cn=abn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足Sn=an+1且a1=1 則{an}通項公式為
 

查看答案和解析>>

同步練習(xí)冊答案