【題目】已知函數(shù),其中為實數(shù).

(1)若曲線在點處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;

(2)當,,且時,若恒有,試求實數(shù)的取值范圍.

【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).

【解析】試題分析:由題意點處的切線方程為,求出的值,繼而求出函數(shù)的單調(diào)性利用單調(diào)性將問題中的絕對值去掉,構(gòu)造新函數(shù)來證明結(jié)論。

解析:(1)函數(shù)的定義域為,

,可知.

.

,即時,單調(diào)遞增;

時,,單調(diào)遞減.

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)函數(shù)

.

,,

時,可知

恒成立,

可知,在區(qū)間上為單調(diào)遞增函數(shù),

不妨設,且,

變?yōu)?/span>

,

設函數(shù)

,

,得時為單調(diào)遞減函數(shù),即

,

也即恒成立.

因為,可知時,取最大值,

.

時恒成立,

,可知

取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐V-ABC,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BCAC=BC=,O,M分別為AB,VA的中點.

(1)求證:平面MOC⊥平面VAB.

(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正數(shù)數(shù)列的前項和為,且滿足;在數(shù)列中,

(1)求數(shù)列的通項公式;

(2)設,數(shù)列的前項和為. 若對任意,存在實數(shù),使恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個等腰梯形及它的內(nèi)切圓,俯視圖中有兩個邊長分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個正方形的中心.問該幾何體的體積是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鷹潭市龍虎山花語世界位于中國第八處世界自然遺產(chǎn),世界地質(zhì)公元、國家自然文化雙遺產(chǎn)地、國家AAAAA級旅游景區(qū)﹣﹣龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風格,景觀設計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達萬人. 某學校社團為了解進園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在2017年4月1日賞花旺季對進園游客進行取樣調(diào)查,從當日12000名游客中抽取100人進行統(tǒng)計分析,結(jié)果如下:(表一)

年齡

頻數(shù)

頻率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合計

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答題卡中補全頻率分布直方圖,并估計2017年4月1日當日接待游客中30歲以下人數(shù).
(2)完成表格二,并問你能否有97.5%的把握認為在觀花游客中“年齡達到50歲以上”與“性別”相關?
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運游客免費領取龍虎山內(nèi)部景區(qū)門票,再從這10人中選取2人接受電視臺采訪,設這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列 (表二)

50歲以上

50歲以下

合計

男生

5

40

45

女生

15

40

55

合計

20

80

100

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:k2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的反函數(shù)為,則函數(shù)的圖象可能是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(1)(2)兩個班聯(lián)合開展“詩詞大會進校園,國學經(jīng)典潤心田”古詩詞競賽主題班會活動,主持人從這兩個班分別隨機選出20名同學進行當場測試,他們的測試成績按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計如圖(單位:分):
高一(2)班20名學生成績莖葉圖:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分別計算兩個班這20名同學的測試成績在[80,90)的頻率,并補全頻率分布直方圖;
(Ⅱ)分別從兩個班隨機選取1人,設這兩人中成績在[80,90)的人數(shù)為X,求X的分布列(頻率當作概率使用).
(Ⅲ)運用所學統(tǒng)計知識分析比較兩個班學生的古詩詞水平.

查看答案和解析>>

同步練習冊答案