分析 由條件利用同角三角函數的基本關系,求得sinα,則tanα的值可求.
解答 解:∵cosα=$\frac{2}{3}$,且α為第一象限角,
∴sinα=$\sqrt{1-co{s}^{2}α}=\sqrt{1-(\frac{2}{3})^{2}}=\frac{\sqrt{5}}{3}$,
∴tanα=$\frac{sinα}{cosα}=\frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}}=\frac{\sqrt{5}}{2}$.
故答案為:$\frac{\sqrt{5}}{2}$.
點評 本題主要考查同角三角函數的基本關系、三角函數在各個象限中的符號,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 120° | B. | 90° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4a}$ | B. | $\frac{1}{2a}$ | C. | 2a | D. | 4a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|1<x≤2} | B. | {x|1<x<3} | C. | {x|2≤x<3} | D. | {x|1<x<2} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com