已知函數(shù)數(shù)學(xué)公式
(Ⅰ) 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 求函數(shù)f(x)的值域.

解:(Ⅰ)設(shè)t=3+2x-x2,則
由t=3+2x-x2>0得x2-2x-3<0,即(x+1)(x-3)<0,解得-1<x<3.
因?yàn)閠=-(x-1)2+4,所以拋物線的對(duì)稱軸為x=1.
當(dāng)x∈(-1,1]時(shí),t是x的增函數(shù),y是t的減函數(shù);
當(dāng)x∈[1,3)時(shí),t是x的減函數(shù),y是t的減函數(shù).
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為[1,3),單調(diào)遞減區(qū)間為(-1,1].
(Ⅱ)如圖:
由(Ⅰ)知t=-(x-1)2+4,當(dāng)x=1時(shí),tmax=4.
又因?yàn)閥=log2t在(0,4]上是減函數(shù),
所以當(dāng)tmax=4時(shí),
故函數(shù)f(x)的值域?yàn)閇-2,+∞).
分析:(Ⅰ)設(shè)t=3+2x-x2,則.求出f(x)的定義域,先研究t,y的單調(diào)性,再根據(jù)復(fù)合函數(shù)單調(diào)性的判定方法即可求得f(x)的單調(diào)區(qū)間,注意定義域;
(Ⅱ)在f(x)的定義域內(nèi)先求函數(shù)t=-(x-1)2+4的值域,再結(jié)合為y=log2t的單調(diào)性即可求得f(x)的值域;
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)性、對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì)及函數(shù)值域的求解,屬中檔題,判斷復(fù)合函數(shù)單調(diào)性的方法:“同增異減”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin
1
2
x+
3
cos
1
2
x
,求:
(1)函數(shù)y的最大值,最小值及最小正周期;
(2)函數(shù)y的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)-3≤log
1
2
x≤-
1
2
,求函數(shù)y=log2
x
2
•log2
x
4
的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x•
x
求:f′(x)并f′(1),f′(
9
4
)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若對(duì)任意,函數(shù)上都有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高三上學(xué)期數(shù)學(xué)文卷 題型:解答題

 

(本小題滿分分)

已知函數(shù)

(1)求函數(shù)的最大值;

(2)在中,,角滿足,求的面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案