【題目】已知函數(shù),.

1)若曲線處的切線恰與曲線相切,求a的值;

2)不等式對(duì)一切正實(shí)數(shù)x恒成立,求a的取值范圍;

3)已知,若函數(shù)上有且只有一個(gè)零點(diǎn),求a的取值范圍.

【答案】123.

【解析】

1)求出切線方程后,再與二次函數(shù)聯(lián)立,利用判別式為0,即可求得的值;

2)將問(wèn)題轉(zhuǎn)化為對(duì)任意的恒成立,再利用參變分離和構(gòu)造函數(shù),即可得答案;

3)由題意得,,對(duì)兩種情況討論,從而求得的取值范圍.

1)因?yàn)?/span>,所以,又切點(diǎn)為,

因此曲線處的切線為,

聯(lián)立,消去y得:

由題意知,

解得.

2)因?yàn)?/span>,所以,

設(shè),

,

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增;

因此

所以,即.

3,

①當(dāng)時(shí),

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

所以

當(dāng),即時(shí),

因?yàn)?/span>,

,

所以上存在唯一的零點(diǎn),

因此上無(wú)零點(diǎn),所以,解得

,所以.

當(dāng),即時(shí),有唯一的零點(diǎn).

當(dāng),即時(shí),恒成立,所以無(wú)零點(diǎn).

②當(dāng)時(shí),

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

因?yàn)?/span>,所以當(dāng),無(wú)零點(diǎn).

設(shè),則,于是,

,

所以上存在唯一的零點(diǎn),即上有且只有一個(gè)零點(diǎn),

綜上可知,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個(gè)“引葭赴岸”問(wèn)題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”其意思為“今有水池1丈見(jiàn)方(即尺),蘆葦生長(zhǎng)在水的中央,長(zhǎng)出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問(wèn)水深、蘆葦?shù)拈L(zhǎng)度各是多少?假設(shè),現(xiàn)有下述四個(gè)結(jié)論:

①水深為12尺;②蘆葦長(zhǎng)為15尺;③;④.

其中所有正確結(jié)論的編號(hào)是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________,__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中國(guó)詩(shī)詞大會(huì)》是由CCTV-10自主研發(fā)的一檔大型文化益智節(jié)目,以“賞中華詩(shī)詞,尋文化基因品生活之美”為宗旨,帶動(dòng)全民重溫經(jīng)典、從古人的智慧和情懷中汲取營(yíng)養(yǎng)、涵養(yǎng)心靈,節(jié)目廣受好評(píng)還因?yàn)槠漕H具新意的比賽規(guī)則:每場(chǎng)比賽,106位挑戰(zhàn)者全部參賽,分為單人追逐賽和擂主爭(zhēng)霸賽兩部分單人追逐賽的最終優(yōu)勝者作為攻擂者與守擂擂主進(jìn)行比拼,競(jìng)爭(zhēng)該場(chǎng)比賽的擂主,擂主爭(zhēng)霸賽以搶答的形式展開,共九道題,搶到并回答正確者得一分,答錯(cuò)則對(duì)方得一分,先得五分者獲勝,成為本場(chǎng)擂主,比賽結(jié)束已知某場(chǎng)擂主爭(zhēng)霸賽中,攻擂者與守擂擂主都參與每一次搶題且兩人搶到每道題的概率都是,攻擂者與守擂擂主正確回答每道題的概率分別為,,且兩人各道題是否回答正確均相互獨(dú)立.

1)比賽開始,求攻擂者率先得一分的概率;

2)比賽進(jìn)行中,攻擂者暫時(shí)以領(lǐng)先,設(shè)兩人共繼續(xù)搶答了道題比賽結(jié)束,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cx22y,過(guò)點(diǎn)(02)作直線l交拋物線于A、B兩點(diǎn).

1)證明:OAOB

2)若直線l的斜率為1,過(guò)點(diǎn)AB分別作拋物線的切線l1,l2,若直線l1,l2,相交于點(diǎn)P,直線l1,l2x軸分別于點(diǎn)MN,求△MNP的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,離心率,是橢圓的左頂點(diǎn),是橢圓的左焦點(diǎn),,直線.

(1)求橢圓方程;

(2)直線過(guò)點(diǎn)與橢圓交于、兩點(diǎn),直線、分別與直線交于、兩點(diǎn),試問(wèn):以為直徑的圓是否過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時(shí)刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場(chǎng)燈光展中亮燈的時(shí)長(zhǎng)(單位:),得到下面的頻數(shù)表:

亮燈時(shí)長(zhǎng)/

頻數(shù)

10

20

40

20

10

以樣本中100盞燈的平均亮燈時(shí)長(zhǎng)作為一盞燈的亮燈時(shí)長(zhǎng).

(1)試估計(jì)的值;

2)設(shè)表示這10000盞燈在某一時(shí)刻亮燈的數(shù)目.

①求的數(shù)學(xué)期望和方差

②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時(shí),燈光展處于最佳燈光亮度.試由此估計(jì),在一場(chǎng)燈光展中,處于最佳燈光亮度的時(shí)長(zhǎng)(結(jié)果保留為整數(shù)).

附:

①某盞燈在某一時(shí)刻亮燈的概率等于亮燈時(shí)長(zhǎng)與燈光展總時(shí)長(zhǎng)的商;

②若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家每年都會(huì)對(duì)中小學(xué)生進(jìn)行體質(zhì)健康監(jiān)測(cè),一分鐘跳繩是監(jiān)測(cè)的項(xiàng)目之一.今年某小學(xué)對(duì)本校六年級(jí)300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計(jì),發(fā)現(xiàn)一分鐘跳繩個(gè)數(shù)最低為10,最高為189.現(xiàn)將跳繩個(gè)數(shù)分成,,,,,6組,并繪制出如下的頻率分布直方圖.

1)若一分鐘跳繩個(gè)數(shù)達(dá)到160為優(yōu)秀,求該校六年級(jí)學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);

2)上級(jí)部門要對(duì)該校體質(zhì)監(jiān)測(cè)情況進(jìn)行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計(jì)此校六年級(jí)男生一分鐘跳繩個(gè)數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正整數(shù)m,n滿足,,,,…,為集各n元子集,且;

1)若,滿足;

i)求證:

ii)求滿足條件的集合的個(gè)數(shù);

2)若中至多有一個(gè)元素,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案