如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則折痕EF的長為( 。
A、6
B、12
C、2
5
D、4
5
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)BE=x,表示出CE=16-x,根據(jù)翻折的性質(zhì)可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根據(jù)翻折的性質(zhì)可得∠AEF=∠CEF,根據(jù)兩直線平行,內(nèi)錯角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根據(jù)等角對等邊可得AE=AF,過點(diǎn)E作EH⊥AD于H,可得四邊形ABEH是矩形,根據(jù)矩形的性質(zhì)求出EH、AH,然后求出FH,再利用勾股定理列式計算即可得解.
解答: 解:設(shè)BE=x,則CE=BC-BE=16-x,
∵沿EF翻折后點(diǎn)C與點(diǎn)A重合,
∴AE=CE=16-x,
在Rt△ABE中,AB2+BE2=AE2,
即82+x2=(16-x)2,解得x=6,∴AE=16-6=10,
由翻折的性質(zhì)得,∠AEF=∠CEF,
∵矩形ABCD的對邊AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,
∴AE=AF=10,
過點(diǎn)E作EH⊥AD于H,則四邊形ABEH是矩形,
∴EH=AB=8,AH=BE=6,∴FH=AF-AH=10-6=4,
在Rt△EFH中,EF=
EH2+FH2
=
64+16
=4
5

故選:D.
點(diǎn)評:本題考查線段長的求法,是中檔題,解題時要注意函數(shù)知識在生產(chǎn)生活中的實(shí)際應(yīng)用,注意用數(shù)學(xué)知識解決實(shí)際問題能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算f(x)=9x6+3x5+4x4+6x3+x2+8x+1,當(dāng)x=3時的值,需要進(jìn)行
 
次乘法和次加法運(yùn)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,橢圓C與x軸正半軸交于A點(diǎn),與y軸正半軸交于B(0,2),且
BF
BA
=4
2
+4,則橢圓C的方程為( 。
A、
x2
4
+
y2
2
=1
B、
x2
6
+
y2
4
=1
C、
x2
8
+
y2
4
=1
D、
x2
16
+
y2
8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡:
sin(5400-x)
cos(9000-x)
cos(8100-x)
sin(4500-x)
cos(3600-x)
sin(-x)

(2)已知tanx=2,求
cosx+sinx
cosx-sinx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,角B為銳角,且sinB=
2
2
3

(1)求sin2
A+C
2
+cos2B的值;
(2)若b=2,求ac的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
,x≥0
e-x-ex,x<0
,若函數(shù)y=f(x)-k(x+1)有三個零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(1,+∞)
B、(-
1
2
,0)
C、(0,
1
2
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人約定某天晚上6:00~7:00之間在某處會面,并約定甲早到應(yīng)等乙半小時,而乙早到無需等待即可離去,那么兩人能會面的概率是( 。
A、
5
8
B、
1
3
C、
1
8
D、
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)函數(shù)f(x)=lg(2sinx-1)的定義域是
 
;(結(jié)果寫成區(qū)間或集合形式)
(2)已知sin(x-
π
6
)=
3
5
,x∈(0,
π
2
)則cosx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos300°=( 。
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案