空間四邊形ABCD中,若E、F、G、H分別為AB、BC、CD、DA邊上的中點,則下列各式中成立的是(  )
A、
EB
+
BF
+
EH
+
GH
=0
B、
EB
+
FC
+
EH
-
EG
=0
C、
EF
+
FG
+
EH
+
GH
=0
D、
EF
-
FB
+
CG
+
GH
=0
考點:向量加減混合運算及其幾何意義
專題:平面向量及應用
分析:根據(jù)題意,畫出圖形,結合圖形,利用向量的加法與減法的幾何意義,對每一個選項進行判斷即可.
解答: 解:畫出圖形,如圖所示,
∵E、F、G、H分別為AB、BC、CD、DA邊上的中點,
FC
=
BF
GH
=
FE
,
EB
+
FC
+
EH
-
EG
=
EB
+
BF
+(
EH
-
EG

=
EF
+
GH

=
EF
-
EF

=
0

故答案為:B.
點評:本題考查了平面向量的加法與減法的幾何意義的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,cos2A=2cos2A-2cosA.
(1)求角A的大;
(2)若a=3,sinB=2sinC,求S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,兩高速公路線垂直相交于站A,若已知AB=100千米,甲汽車從A站出發(fā),沿AC方向以50千米/小時的速度行駛,同時乙汽車從B站出發(fā),一年BA方向以v千米/小時的速度行駛,至A站即停止前行(甲車仍繼續(xù)行駛)(兩車的車長忽略不計).
(1)甲、乙兩車的最近距離為
 
(用含v的式子表示);
(2)若甲、乙兩車從開始行駛到甲、乙兩車相距最近時所用時間為t0小時,則當v為
 
時t0最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,中國漁民在中國南海黃巖島附近捕魚作業(yè),中國海監(jiān)船在A地偵查發(fā)現(xiàn),在在南偏東60°方向的B地,有一艘某國軍艦正以每小時13海里的速度向正西方向的C地行駛,企圖抓捕正在C地捕魚的中國漁民,此時,C地位于中國海監(jiān)船的南偏東45°方向的10海里處,中國海監(jiān)船以每小時30海里的速度趕往C地救援我國漁民,能不能及時趕到?(
2
≈1.41,
3
≈1.73,
6
=2.45).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(x)=2f(
1
x
),當x∈[1,3]時,f(x)=lnx在區(qū)間[
1
3
,3]上,函數(shù)g(x)=f(x)-ax(a>0)恰有一個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幼兒園有教師30人,對他們進行年齡狀況和受教育程度的調(diào)查,其結果如下:
本科研究生合計
35歲以下527
35~50歲(含35歲和50歲)17320
50歲以上213
(Ⅰ)從該幼兒園教師中隨機抽取一人,求具有研究生學歷的概率;
(Ⅱ)從幼兒園所有具有研究生學歷的教師中隨機抽取2人,求有35歲以下的研究生或50歲以上的研究生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某農(nóng)工貿(mào)集團開發(fā)的養(yǎng)殖業(yè)和養(yǎng)殖加工業(yè)的年利潤分別為P和Q(萬元),這兩項生產(chǎn)與投入的資金a(萬元)的關系是P=
a
3
,Q=
10
a
3
,該集團今年計劃對這兩項生產(chǎn)投入資金共60萬元,為獲得最大利潤,對養(yǎng)殖業(yè)與養(yǎng)殖加工業(yè)生產(chǎn)每項各投入多少萬元?最大利潤可獲多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(-1,x)與
b
=(x,-4)平行且方向相同,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進行統(tǒng)計后,結果如下表所示.
組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的比例
第1組[18,28)50.5
第2組[28,38)18a
第3組[38,48)270.9
第4組[48,58)x0.36
第5組[58,68)30.2
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

同步練習冊答案