【題目】已知橢圓的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:相切的直線l交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求△AOB面積的最大值。
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)利用橢圓的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為,建立方程,即可求橢圓C的方程;
(Ⅱ)對直線AB的斜率分類討論,設(shè)直線AB的方程為,利用相切可得,與橢圓聯(lián)立,利用韋達(dá)定理可以表示,利用均值不等式求出最值即可得到△AOB面積的最大值
解:(I)由題設(shè):,
解得
∴橢圓C的方程為
(Ⅱ).設(shè)
1.當(dāng)ABx軸時(shí),
2.當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為
由已知,得
把代入橢圓方程消去y,
整理得,
有
,
,
,
,
當(dāng)且僅當(dāng),即時(shí)等號成立.
當(dāng)時(shí),
綜上所述,從而△AOB面積的最大值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為支援邊遠(yuǎn)地區(qū)教育事業(yè)的發(fā)展,現(xiàn)有5名師范大學(xué)畢業(yè)生主動(dòng)要求赴西部某地區(qū)三所不同的學(xué)校去支教,每個(gè)學(xué)校至少去1人,甲、乙不能安排在同一所學(xué)校,則不同的安排方法有( )
A.180種B.150種C.90種D.114種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)為, 以為圓心的圓與雙曲線的某一條漸近線交于兩點(diǎn).若,且(其中為原點(diǎn)),則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:上頂點(diǎn)為A,右頂點(diǎn)為B,離心率,O為坐標(biāo)原點(diǎn),原點(diǎn)到直線AB的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線與橢圓C相交于E、F兩不同點(diǎn),若橢圓C上一點(diǎn)P滿足.求△EPF面積的最大值及此時(shí)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)如果對所有的≥1,都有≤,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論當(dāng)時(shí),函數(shù)的單調(diào)性;
(2)當(dāng)對任意的恒成立,其中.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,,.是棱的中點(diǎn).
(1)求證:面;
(2)求二面角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某消費(fèi)者協(xié)會(huì)在3月15號舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢服務(wù)活動(dòng),著力提升消費(fèi)者維權(quán)意識(shí).組織方從參加活動(dòng)的1000名群眾中隨機(jī)抽取n名群眾,按他們的年齡分組:第1組,第2組,第3組,第4組,第5組,其中第1組有6人,得到的頻率分布直方圖如圖所示.
(1)求m,n的值,并估計(jì)抽取的n名群眾中年齡在的人數(shù);
(2)已知第1組群眾中男性有2人,組織方要從第1組中隨機(jī)抽取3名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com