設(shè)R,r分別為Rt△的外接圓半徑和內(nèi)切圓半徑,則的最大值為   
【答案】分析:用三角形的三邊表示出兩個圓的半徑,用基本不等式求最值即可.
解答:解:設(shè)三角形三邊為a,b,c,其中c為三角形的斜邊,則R=c
由面積公式得r(a+b+c)=ab
∴r==
等號當(dāng)且僅當(dāng)a=b時取等號,所以三角形為等腰直角三角形
所以a=b=c   代入①
得r≤
所以則的最大值為
故應(yīng)填
點評:考查基本不等式求最值以及三角形的面積公式的兩種形式
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在x軸上方有一段曲線弧Γ,其端點A、B在x軸上(但不屬于Γ),對Γ上任一點P及點F1(-1,0),F(xiàn)2(1,0),滿足:|PF1|+|PF2|=2
2
.直線AP,BP分別交直線l:x=2于R,T兩點.
(1)求曲線弧Γ的方程;
(2)設(shè)R,T兩點的縱坐標分別為y1,y2,求證:y1y2=-1;
(3)求|RT|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)R,r分別為Rt△的外接圓半徑和內(nèi)切圓半徑,則
γR
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=
1
3
(1-x)
且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分別求命題P、Q為真命題時的實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取何范圍時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)R,r分別為Rt△的外接圓半徑和內(nèi)切圓半徑,則數(shù)學(xué)公式的最大值為________.

查看答案和解析>>

同步練習(xí)冊答案