如圖,點(diǎn)為圓形紙片內(nèi)不同于圓心的定點(diǎn),動(dòng)點(diǎn)在圓周上,將紙片折起,使點(diǎn)與點(diǎn)重合,設(shè)折痕交線段于點(diǎn).現(xiàn)將圓形紙片放在平面直角坐標(biāo)系中,設(shè)圓:,記點(diǎn)的軌跡為曲線.
⑴證明曲線是橢圓,并寫(xiě)出當(dāng)時(shí)該橢圓的標(biāo)準(zhǔn)方程;
⑵設(shè)直線過(guò)點(diǎn)和橢圓的上頂點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為點(diǎn),若橢圓的離心率,求點(diǎn)的縱坐標(biāo)的取值范圍.
解:⑴依題意得,直線m為線段AM的中垂線,∴NA=NM
∴NC+NA=NC+NM=CM=2a>2。
∴N點(diǎn)的軌跡是以C、A為焦點(diǎn),長(zhǎng)軸為2a,焦距為2的橢圓。 ……………4分
當(dāng)a=2時(shí),2a=4,焦距2C=2 ∴b2=3
∴橢圓方程為。 ……………………………………………………………6分
⑵設(shè)橢圓的標(biāo)準(zhǔn)方程為,由⑴知:b2=a2−1
又C(−1,0),B(0,b),
∴直線l的方程為,即bx−y+b=0 …………………………8分
設(shè)Q(x,y),因?yàn)辄c(diǎn)Q與點(diǎn)A(1,0)關(guān)于直線l對(duì)稱(chēng)。
∴,消去x,得: …………………………10分
∵離心率e∈[,], ∴≤e2≤, 即≤≤, ∴≤a2≤4 ……………12分
∴≤b2+1≤4,即≤b≤。
∴≤2,當(dāng)且僅當(dāng)b=1時(shí)取等號(hào)。 ……………………14分
又當(dāng)b=時(shí),y=;當(dāng)b=時(shí),y=,∴≤y≤2。
∴點(diǎn)Q的縱坐標(biāo)的取值范圍時(shí)[,2]。 ………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣高三下學(xué)期期初測(cè)試數(shù)學(xué)試卷 題型:解答題
(本題滿(mǎn)分15分)如圖,點(diǎn)為圓形紙片內(nèi)不同于圓心的定點(diǎn),動(dòng)點(diǎn)在圓周上,將紙片折起,使點(diǎn)與點(diǎn)重合,設(shè)折痕交線段于點(diǎn).現(xiàn)將圓形紙片放在平面直角坐標(biāo)系中,設(shè)圓:,記點(diǎn)的軌跡為曲線.
⑴證明曲線是橢圓,并寫(xiě)出當(dāng)時(shí)該橢圓的標(biāo)準(zhǔn)方程;
⑵設(shè)直線過(guò)點(diǎn)和橢圓的上頂點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為點(diǎn),若橢圓的離心率,求點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com