若函數(shù)f(x)=asinx+bcosx,(ab≠0)的圖象向左平移個單位后得到的圖象對應的函數(shù)是奇函數(shù),則直線ax-by+c=0的斜率為( )
A.
B.
C.-
D.-
【答案】分析:利用輔助角公式將f(x)化為 sin(x+∅),(tanφ=),將此圖象平移后得到的圖象對應的函數(shù)解析式為 g(x)= sin(x++∅),再由g(x)是奇函數(shù)可得 =k π,k∈z,再根據(jù)tan∅=tan(kπ-)=-,求得 的值,即可求得直線ax-by+c=0的斜率 的值.
解答:解:∵函數(shù)f(x)=asinx+bcosx= sin(x+∅),(tanφ=),
把函數(shù)f(x)的圖象向左平移個單位后得到的圖象對應的函數(shù)是g(x)= sin(x++∅),
再由g(x)是奇函數(shù)可得 =k π,k∈z.
∴tan∅=tan(kπ-)=-,即 =-
故直線ax-by+c=0的斜率為 =-,
故選D.
點評:本題主要考查輔助角公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,函數(shù)的奇偶性,直線的斜率,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
對不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
s+1
s
)=
t-1
t
;
(3)設x1=
11
17
,xn+1=f(xn),n=1,2,….問:數(shù)列{
1
xn-1
}是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省惠州一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

設函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省惠州一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式對不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案