(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,,.
(Ⅰ)若異面直線與所成的角為,求棱柱的高;
(Ⅱ)設(shè)是的中點(diǎn),與平面所成的角為,當(dāng)棱柱的高變化時(shí),求的最大值.
(1)1(2)
解析試題分析:解:建立如圖2所示的空間直角坐標(biāo)系,設(shè),則有
,,,,
,,. ……… 2分
(Ⅰ)因?yàn)楫惷嬷本與所成的角,所以,
即,得,解得. ………… 6分
(Ⅱ)由是的中點(diǎn),得,于是.
設(shè)平面的法向量為,于是由,,可得
即 可取, ………… 8分
于是.而.
令,………………………………10分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/5/cnyvg2.png" style="vertical-align:middle;" />,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.
所以,
故當(dāng)時(shí),的最大值. ………………1 2分
考點(diǎn):本試題考查了棱柱中距離和角的求解。
點(diǎn)評(píng):對(duì)于幾何體中的高的求解,可以借助于勾股定理來得到,同時(shí)對(duì)于線面角的求解,一般分為三步驟:先作,二證,三解。這也是所有求角的一般步驟,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖1,在Rt中,,.D、E分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2.
(Ⅰ)求證:平面平面;
(Ⅱ)若,求與平面所成角的余弦值;
(Ⅲ)當(dāng)點(diǎn)在何處時(shí),的長(zhǎng)度最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, , ,,
為的中點(diǎn).
(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,.
(1)求證:FC∥平面AED;
(2)若,當(dāng)二面角為直二面角時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點(diǎn).
(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ) 在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在四棱錐中,,,平面,為的中點(diǎn),.
(Ⅰ)求四棱錐的體積;
(Ⅱ)若為的中點(diǎn),求證:平面平面;
(Ⅲ)求二面角的大小。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 是邊長(zhǎng)為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱中,,分別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且為的中點(diǎn).
求證:(1)平面平面;
(2)直線平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點(diǎn),作交于點(diǎn)
(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com