圓心在軸上,且與直線切于點的圓的方程為                 .
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
(1)求過點且與圓同心的圓C的方程,
(2)求圓C過點的切線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
(1)   已知圓C經(jīng)過P(4,– 2),Q(–1,3)兩點,若圓心C在直線y = 2x上,求圓C的方程;
(2)   已知圓M經(jīng)過坐標原點O,圓心M在直線上,與x軸的另一個交點為A,△MOA為等腰直角三角形,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)選修4-1:幾何證明選講.
如圖所示,已知與⊙相切,為切點,為割線,
,相交于點,上一點,
.
(1)求證:;
(2)若,,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖:是內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點C,弦BD//MN,ACBD相交于點E。
(I)求證:;
(II)若AB=6,BC=4,求AE。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,⊙O1與⊙O2交于M、N
點,直線AE與這兩個圓及MN依次交于AB、CD、E.且       
AD=19,BE=16,BC=4,則AE        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


選作題,請考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分,每道題滿分10分)
22、選修4—1:幾何證明選講
如圖,△ABC的角平分線AD的延長線交于的外按圓于點E。
(I)證明:△ABC∽△ADC
(II)若△ABC的面積為AD·AE,求∠BAC的大小。

23、選修4—4:坐標系與參數(shù)方程
已知半圓C的參數(shù)方程為參數(shù)且(0≤
P為半圓C上一點,A(1,0)O為坐標原點,點M在射線OP上,線段OM與  的長度均為
(I)求以O為極點,軸為正半軸為極軸建立極坐標系求點M的極坐標。
(II)求直線AM的參數(shù)方程。
24、選修4—5,不等式選講
已知函數(shù)  
(I)若不等式的解集為求a值。
(II)在(I) 條件下,若對一切實數(shù)恒成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)求圓心在x-y-4=0上,并且經(jīng)過兩圓的交點的圓方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

O的弦ED,CB的延長線交于點A.若BD⊥AE,AB=4,BC=2,AD=3,則DE=     ;
CE=      .

查看答案和解析>>

同步練習冊答案