19、設(shè)函數(shù)f(x)=ax3+bx+cx+d的圖象與y軸的交點(diǎn)為點(diǎn)P,且曲線在點(diǎn)P處的切線方程為12x-y-4=0,若函數(shù)在x=2處取得極值0,試求函數(shù)的單調(diào)區(qū)間.
分析:根據(jù)切點(diǎn)既在切線上又在函數(shù)f(x)的圖象上,即可求出d,根據(jù)導(dǎo)數(shù)的幾何意義可知函數(shù)在x=0處的導(dǎo)數(shù)即為切線的斜率,求出c,再根據(jù)函數(shù)在x=2處取得極值0,建立f'(2)=0,f(2)=0,求出a和b,從而求出函數(shù)f(x)的解析式,最后解不等式fˊ(x)>0和fˊ(x)<0即可求出函數(shù)的單調(diào)區(qū)間.
解答:解:∵點(diǎn)P在切線12x-y-4=0上,∴P(0,-4),∴d=-4.
f'(x)=3ax2+2bx+c,∴f'(0)=12,∴c=12.(4分)
又f'(2)=0,f(2)=0,得a=2,b=-9.(6分)
f(x)=2x3-9x2+12x-4,f'(x)=6x2-18x+12=6(x-1)(x-2),(8分)
f(x)的單調(diào)遞增區(qū)間是(-∞,1)和(2,+∞),單調(diào)遞減區(qū)間是(1,2)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)性等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過(guò)點(diǎn)(1,7),又其反函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項(xiàng)是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊(cè)答案