【題目】如圖:在三棱錐中,,是直角三角形,,

,點(diǎn)分別為的中點(diǎn).

1)求證:

2)求直線與平面所成角的大;

3)求二面角的正切值.

【答案】1)證明見(jiàn)解析;(2;(3.

【解析】

試題以分別為軸建立空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)的坐標(biāo).1)計(jì)算,可得兩直線垂直;(2)計(jì)算直線的方向向量和平面的法向量,可求得線面角的余弦值,用反三角函數(shù)表示出這個(gè)角的大小;(3)分別求出平面,平面的法向量,利用法向量求兩個(gè)平面所成角的余弦值,然后轉(zhuǎn)化為正切值.

試題解析:

解法一(1)連接。在中,.

,點(diǎn)的中點(diǎn),

.

,即在平面內(nèi)的射影,.

分別為的中點(diǎn),

,

.

2,.

連結(jié)于點(diǎn),,

為直線與平面所成的角,.

,,又

.,

中,,

即直線與平面所成角的大小為.

3)過(guò)點(diǎn)于點(diǎn),連結(jié),,

,即在平面內(nèi)的射影,

,為二面角的平面角.

中,,

,即二面角的正切值為.

解法二 建立空間直角坐標(biāo)系,如圖

.

1,

.

2)由已知可得,為平面的法向量,,

直線與面所成角的正弦值為.

直線與面所成角的為.

3)設(shè)平面的一個(gè)法向量為,

,令,

.

由已知可得,向量為平面的一個(gè)法向量,

,

.

二面角的正切值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機(jī)器人攔截挑戰(zhàn)賽,在處按方向釋放機(jī)器人甲,同時(shí)在處按某方向釋放機(jī)器人乙,設(shè)機(jī)器人乙在處成功攔截機(jī)器人甲,若點(diǎn)在矩形區(qū)城內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失敗,已知米,中點(diǎn),機(jī)器人乙的速度是機(jī)器人甲的速度的2倍,比賽中兩機(jī)器人均按勻速直線遠(yuǎn)動(dòng)方式行進(jìn).

1)如圖建系,求的軌跡方程;

2)記的夾角為,,如何設(shè)計(jì)的長(zhǎng)度,才能確保無(wú)論的值為多少,總可以通過(guò)設(shè)置機(jī)器人乙的釋放角度使之挑戰(zhàn)成功?

3)若的夾角為足夠長(zhǎng),則如何設(shè)置機(jī)器人乙的釋放角度,才能挑戰(zhàn)成功?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】類似于平面直角坐標(biāo)系,我們可以定義平面斜坐標(biāo)系:設(shè)數(shù)軸的交點(diǎn)為,與軸正方向同向的單位向量分別是,且的夾角為,其中。由平面向量基本定理,對(duì)于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對(duì),使得,把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo),也叫做向量在斜坐標(biāo)系中的坐標(biāo)。在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點(diǎn)方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如時(shí),方程表示斜坐標(biāo)系內(nèi)一條過(guò)點(diǎn)(2,1),且方向向量為(4,-5)的直線。

(1)若, ,且的夾角為銳角,求實(shí)數(shù)m的取值范圍;

(2)若,已知點(diǎn)和直線 ①求l的一個(gè)法向量;②求點(diǎn)A到直線l的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲兩顆骰子,計(jì)算:

1)事件兩顆骰子點(diǎn)數(shù)相同的概率;

2)事件點(diǎn)數(shù)之和小于7”的概率;

3)事件點(diǎn)數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在測(cè)量一根新彈簧的勁度系數(shù)時(shí),測(cè)得了如下的結(jié)果:

所掛重量()(x

1

2

3

5

7

9

彈簧長(zhǎng)度()(y

11

12

12

13

14

16

1)請(qǐng)?jiān)谙聢D坐標(biāo)系中畫(huà)出上表所給數(shù)據(jù)的散點(diǎn)圖;

2)若彈簧長(zhǎng)度與所掛物體重量之間的關(guān)系具有線性相關(guān)性,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

3)根據(jù)回歸方程,求掛重量為的物體時(shí)彈簧的長(zhǎng)度.所求得的長(zhǎng)度是彈簧的實(shí)際長(zhǎng)度嗎?為什么?

注:本題中的計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位.

(參考公式:

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角AB,C所對(duì)的邊分別為a,b,c,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷的奇偶性,并證明;

2)用定義證明函數(shù)上單調(diào)遞減;

3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為2,寬為1 , 邊分別在軸、軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合,將矩形折疊,使點(diǎn)落在線段上,設(shè)此點(diǎn)為.

(1)若折痕的斜率為-1,求折痕所在的直線的方程;

(2)若折痕所在直線的斜率為,( 為常數(shù)),試用表示點(diǎn)的坐標(biāo),并求折痕所在的直線的方程;

(3)當(dāng)時(shí),求折痕長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為矩形,且,,若平面,分別是線段的中點(diǎn).

(1)證明:;

(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置:若不存在,說(shuō)明理由;

(3)若與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案