過曲線y=
1
2
x3上的點(1,
1
2
)作曲線的切線m,則該切線m與圓O:x2+y2=1相交的弦長為
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應(yīng)用,直線與圓
分析:先求出切線m的方程,再利用勾股定理,計算切線m與圓O:x2+y2=1相交的弦長.
解答: 解:由題意,點(1,
1
2
)為切點,則
∵y=
1
2
x3,
∴y′=
3
2
x2,
∴x=1時,y′=
3
2
,y=
1
2
,
∴切線m:y-
1
2
=
3
2
(x-1),即3x-2y-2=0,
∴圓心到直線的距離為
2
13

∴切線m與圓O:x2+y2=1相交的弦長為2
1-
4
13
=
6
13
13

故答案為:
6
13
13
點評:本小題主要考查導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,點A,B,C,D在⊙O上,AB=AC,AD與BC相交于點E,AE=
1
2
ED,延長DB到點F,使FB=
1
2
BD,連結(jié)AF.求證:
(Ⅰ)△BDE∽△FDA;
(Ⅱ)FA2=FB•FD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班級有一個7人小組,現(xiàn)任選其中3人相互調(diào)整座位,其余4人座位不變,則不同的調(diào)整方案的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若?x0∈[1,3],使得不等式x2-ax+4≤0成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)為R上的偶函數(shù),且當x∈(-∞,0)時,f(x)=x(x-1),則當x∈(0,+∞)時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a5=8,S3=6,則a9=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式|x+1|-|x-2|≥a在實數(shù)集R中有非空真子集解,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個四棱柱的各個頂點都在一個直徑為2cm的球面上,如果該四棱柱的底面為邊長是1cm的正方形,側(cè)棱與底面垂直,那么該四棱柱的表面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα-sinβ=
6
3
,cosα-cosβ=
3
3
,則cos2
α-β
2
等于( 。
A、
3
4
B、
1
2
C、
1
16
D、
1
4

查看答案和解析>>

同步練習冊答案