若f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請(qǐng)說明理由.
①; ②不存在,詳見解析
【解析】
試題分析:①根據(jù)信息找到b所滿足的等式即可求出b的值,一定要先判斷函數(shù)在閉區(qū)間上的單調(diào)性;②先假設(shè)存在題目要求的常數(shù),根據(jù)“四維光軍”函數(shù)的特性去找到此常數(shù)能得到的結(jié)論,推出矛盾即可說明這樣的常數(shù)是不存在的,這是一種逆向思維的題目,首先假設(shè)存在,由存在得出矛盾,則可知存在不成立.
試題解析:①由已知得,其對(duì)稱軸為,區(qū)間在對(duì)稱軸的右邊,
所以函數(shù)在區(qū)間上是單調(diào)遞增的, 3分
由“四維光軍”函數(shù)的定義可知,
,即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103023201650747091/SYS201310302320441902788369_DA.files/image008.png">,解得; 6分
②假如函數(shù)在區(qū)間上是“四維光軍”函數(shù), 7分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103023201650747091/SYS201310302320441902788369_DA.files/image009.png">在區(qū)間是單調(diào)遞減函數(shù),則有, 10分
即,解得,這與已知矛盾. 12分
考點(diǎn):函數(shù)單調(diào)性的應(yīng)用,函數(shù)的圖形和性質(zhì)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A.[0,1) B.[2,) C.[0,) D.(-∞,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.M B.N C.M D.N
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1]
(1)若f(x)的定義域?yàn)?-∞,+∞),求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)?-∞,+∞),求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修一3.2對(duì)數(shù)函數(shù)練習(xí)卷(二)(解析版) 題型:解答題
.已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定義域?yàn)?b>R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分14分)
已知0是坐標(biāo)原點(diǎn),,
(I)的單調(diào)遞增區(qū)間;
(II)若f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052323403901567300/SYS201205232341521093870399_ST.files/image003.png">,值域?yàn)閇2,5],求m的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com