設(shè)正數(shù)a、b滿足2a+3b=ab,則a+b的最小值是
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:兩個(gè)正數(shù)a,b 滿足2a+3b=ab,可得b=
2a
a-3
>0,即a-3>0,因此a+b=a-3+
6
a-3
+5,利用基本不等式即可得出.
解答: 解:∵兩個(gè)正數(shù)a,b 滿足2a+3b=ab,
∴b=
2a
a-3
>0,
∴a-3>0
∴a+b=a+
2a
a-3
=a+
2(a-3)+6
a-3
=a+2+
6
a-3
=a-3+
6
a-3
+5≥2
(a-3)•
6
a-3
+5=5+2
6
,當(dāng)且僅當(dāng)a=3+
6
時(shí)取等號(hào),
故a+b的最小值是5+2
6

故答案為:5+2
6
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
log2(x+1)
x2-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖(正視圖的弧線是半圓),根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是(  )
A、(80+4π)cm3
B、(80+5π)cm3
C、(80+6π)cm3
D、(80+10π)cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二項(xiàng)式(1+2x)n(n≥2,n∈N*)的展開式中第3項(xiàng)的系數(shù)是A,數(shù)列{an}(n∈N*)是公差為2的等差數(shù)列,且前n項(xiàng)和為Sn,則
lim
n→∞
A
Sn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某品牌飲料為了擴(kuò)大其消費(fèi)市場(chǎng),特實(shí)行“再來(lái)一瓶”有獎(jiǎng)促銷活動(dòng).該品牌飲料的瓶蓋內(nèi)或刻有“再來(lái)一瓶”字樣,或刻有“謝謝惠顧”字樣,如見瓶蓋內(nèi)刻有“再來(lái)一瓶”字樣,即可憑該瓶蓋,在指定零售地點(diǎn)兌換相同規(guī)格的飲料一瓶,本次活動(dòng)中獎(jiǎng)的概率為
1
5
今年春節(jié)期間有甲、乙、丙3位朋友聚會(huì),選用6瓶這種飲料,并限定每人喝2瓶,求:
(1)甲喝的2瓶飲料都中獎(jiǎng)的概率;
(2)乙喝到中獎(jiǎng)飲料的概率;
(3)甲、乙、丙3人中恰有2人喝到中獎(jiǎng)飲料的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足x>y>0,且log2x+log2y=1,則
x2+y2
x-y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B,C的坐標(biāo)分別是A(
1
5
,0),B(0,
1
5
),C(cosα,sinα)其中α∈(
π
2
,
2
),且A,B,C三點(diǎn)共線,求sin(π-α)+cos(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m=2“是“f(x)=x2+2(m2-m-2)x+2”為偶函數(shù)”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=g(x)的圖象與函數(shù)f(x)=ax-1的圖象關(guān)于y=x對(duì)稱,并且g(4)=2,則g(2)的值是( 。
A、-
1
2
B、
3
2
C、2
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案