如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請說明理由.
(1) 直三棱柱中,所以B1C1⊥CC1; 因?yàn)锳C⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1 .從而平面AB1C1⊥平面AC1(2) 1:1;(3) 點(diǎn)E位于AB的中點(diǎn)時(shí),能使DE∥平面AB1C1.
【解析】
試題分析:(1)由于ABC-A1B1C1是直三棱柱,所以B1C1⊥CC1;
又因?yàn)锳C⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1 .
由于B1C1平面AB1C1,從而平面AB1C1⊥平面AC1 .
(2)由(1)知,B1C1⊥A1C .所以,若AB1⊥A1C,則可
得:A1C⊥平面AB1C1,從而A1C⊥ AC1 .
由于ACC1A1是矩形,故AC與AA1長度之比為1:1.
(3)點(diǎn)E位于AB的中點(diǎn)時(shí),能使DE∥平面AB1C1.
證法一:設(shè)F是BB1的中點(diǎn),連結(jié)DF、EF、DE.
則易證:平面DEF//平面AB1C1,從而
DE∥平面AB1C1.
證法二:設(shè)G是AB1的中點(diǎn),連結(jié)EG,則易證EGDC1.
所以DE// C1G,DE∥平面AB1C1.
考點(diǎn):線面平行垂直的判定及性質(zhì)
點(diǎn)評:題目中涉及到中點(diǎn)D,要得到的關(guān)系恰好是線面平行,因此考慮由中點(diǎn)構(gòu)成的三角形中位線從而實(shí)現(xiàn)線面平行關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com