如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1

(2) 若AB1⊥A1C,求線段AC與AA1長度之比;

(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請說明理由.

 

【答案】

(1) 直三棱柱中,所以B1C1⊥CC1; 因?yàn)锳C⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1 .從而平面AB1C1⊥平面AC1(2) 1:1;(3) 點(diǎn)E位于AB的中點(diǎn)時(shí),能使DE∥平面AB1C1

【解析】

試題分析:(1)由于ABC-A1B1C1是直三棱柱,所以B1C1⊥CC1;

又因?yàn)锳C⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1

由于B1C1平面AB1C1,從而平面AB1C1⊥平面AC1

(2)由(1)知,B1C1⊥A1C .所以,若AB1⊥A1C,則可

得:A1C⊥平面AB1C1,從而A1C⊥  AC1

由于ACC1A1是矩形,故AC與AA1長度之比為1:1.

(3)點(diǎn)E位于AB的中點(diǎn)時(shí),能使DE∥平面AB1C1

證法一:設(shè)F是BB1的中點(diǎn),連結(jié)DF、EF、DE.

則易證:平面DEF//平面AB1C1,從而

DE∥平面AB1C1

證法二:設(shè)G是AB1的中點(diǎn),連結(jié)EG,則易證EGDC1.

所以DE// C1G,DE∥平面AB1C1

考點(diǎn):線面平行垂直的判定及性質(zhì)

點(diǎn)評:題目中涉及到中點(diǎn)D,要得到的關(guān)系恰好是線面平行,因此考慮由中點(diǎn)構(gòu)成的三角形中位線從而實(shí)現(xiàn)線面平行關(guān)系

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點(diǎn),P是CD上的點(diǎn).
(1)求直線PE與平面ABC所成角的正切值的最大值;
(2)求證:直線PE∥平面A1BF;
(3)求直線PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=
a或2a
a或2a
時(shí),CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).
(Ⅰ)求證:B1C1⊥平面ABB1A1;
(Ⅱ)設(shè)E是CC1的中點(diǎn),試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1;
(3)在CC1上是否存在一點(diǎn)E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案