分析 ①若{an}既是等差數(shù)列又是等比數(shù)列,則數(shù)列為非0常數(shù)列,即an=a1,即可判斷出正誤.
②由Sn=2n-1,當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-2,而a1=1不適合上式,即可判斷出正誤.
③{an}是等差數(shù)列時(shí),Sn=$n{a}_{1}+\frac{n(n-1)}{2}d$=$\fracmscoam4{2}{n}^{2}$+n$({a}_{1}-\fracouesiu0{2})$,即可判斷出正誤.
④若Sn=an,可得當(dāng)n≥2時(shí),an=Sn-Sn-1=a,n=1時(shí),a1=S1=a.對(duì)a與0 的關(guān)系分類(lèi)討論即可判斷出正誤.
解答 解:①若{an}既是等差數(shù)列又是等比數(shù)列,則數(shù)列為非0常數(shù)列,即an=a1,則Sn=na1成立,因此正確.
②∵Sn=2n-1,當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1-2n-2=2n-2,而a1=1不適合上式,所以{an}不是等比數(shù)列,因此不正確.
③∵{an}是等差數(shù)列時(shí),Sn=$n{a}_{1}+\frac{n(n-1)}{2}d$=$\fracq4gui4o{2}{n}^{2}$+n$({a}_{1}-\fracuymwkym{2})$符合Sn=an2+bn(a,b∈R)的形式,故③成立.
④若Sn=an,∴當(dāng)n≥2時(shí),an=Sn-Sn-1=a,n=1時(shí),a1=S1=a.∴a=0時(shí),an=0,數(shù)列{an}僅是等差數(shù)列;a≠0時(shí),
數(shù)列{an}既是等差數(shù)列又是等比數(shù)列,因此不正確.
故只有①③為真命題.
故答案為:①③.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的定義通項(xiàng)公式與求和公式、數(shù)列的遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com