已知|
a
|=2|
b
|=1,<
a
b
>=60°,向量2t
a
+7
b
a
+t
b
夾角為鈍角,求t范圍.
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由題意可得(2t
a
+7
b
)•(
a
+t
b
)<0 且2t
a
+7
b
a
+t
b
不共線,化簡(jiǎn)可得2t+(2t2+7)•
1
4
+7t•
1
4
<0,且
2t
1
7
t
,由此求得t的范圍.
解答: 解:由題意可得
a
b
=1×
1
2
×cos60°=
1
4
,
a
2
=1,
b
2
=
1
4

由2t
a
+7
b
a
+t
b
夾角為鈍角可得(2t
a
+7
b
)•(
a
+t
b
)<0 且2t
a
+7
b
a
+t
b
不共線.
即2t+(2t2+7)•
1
4
+7t•
1
4
<0,且
2t
1
7
t

求得-2<t<-
1
2
,且 t≠±
14
2
,即-2<t<-
14
2
 或-
14
2
<t<-
1
2
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積的定義,兩個(gè)向量共線的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(0,1),B點(diǎn)在直線y=-1上,M點(diǎn)滿
MB
OA
MA
AB
=
MB
BA
,M點(diǎn)的軌跡曲線C
(1)求曲線C的方程;
(2)斜率為1的直線l過原點(diǎn)O,求l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),且對(duì)任意的x∈R,都有f(x+4)=f(x)成立,當(dāng)x∈(0,2),f(x)=-x2+1.
(Ⅰ)當(dāng)x∈(2,6)時(shí),求函數(shù)f(x)的解析式;
(Ⅱ)求不等式f(x)>-1在區(qū)間(2,6)上的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線x2-y2=1與曲線(x-1)2+y2=a2(a>0)恰好有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值(范圍)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行六面體ABCD-A1B1C1D1中,M為AC與BD的交點(diǎn).若
A1B1
=
a
,
A1D1
=
b
A1A
=
c
,則下列向量中與
B1M
相等的向量是( 。
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、
1
2
a
-
1
2
b
+
c
D、-
1
2
a
-
1
2
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程:x2+y2-2x-4y+m=0.
(1)求m的取值范圍;
(2)當(dāng)m=4時(shí),求直線l:x+2y-4=0被圓C所截得的弦MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
x-10245
y12021
若函數(shù)y=f(x)-a有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A、[1,2)
B、[1,2]
C、(2,3)
D、[1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從2007名學(xué)生中選取50名學(xué)生參加全國(guó)數(shù)學(xué)聯(lián)賽,計(jì)劃采用下面的方法選取:先用簡(jiǎn)單隨機(jī)抽樣從2007人中剔除7人,剩下的2000人再按系統(tǒng)抽樣的方法抽。畡t這種方法下,每人入選的概率(  )
A、不全相等
B、均不相等
C、都相等,且為
1
40
D、都相等,且為
50
2007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若書架上有中文書5本,英文書3本,日文書2本,則隨機(jī)抽取一本恰為外文書的概率為(  )
A、
1
2
B、
2
5
C、
3
10
D、
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案