正方形ABCD的邊長(zhǎng)為2,動(dòng)點(diǎn)P到該正方形兩組對(duì)邊距離的積相等,求動(dòng)點(diǎn)P的軌跡方程.

解:以正方形的中心為原點(diǎn)O,兩坐標(biāo)軸分別平行于正方形的兩邊建立直角坐標(biāo)系,取A、BC、D的坐標(biāo)分別為A(1,1)、B(-1,1)、C(-1,-1)、D(1,-1).設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(xy),則P到兩組對(duì)邊的距離分別為|x-1|、|x+1|、|y-1|、|y+1|.

由題意,得|x-1||x+1|=|y-1||y+1|.

x2-1=±(y2-1),即x±y=0或x2y2=2為所求.

點(diǎn)評(píng):此題也可以正方形兩鄰邊所在的直線為坐標(biāo)軸建立直角坐標(biāo)系進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長(zhǎng)為2,E為CD的中點(diǎn),則
AE
BD
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為1,正方形ADEF所在平面與平面ABCD互相垂直,G,H是DF,F(xiàn)C的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE;
(3)求三棱錐G-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長(zhǎng)為4,中心為M,球O與正方形ABCD所在的平面相切于M點(diǎn),過點(diǎn)M的球的直徑另一端點(diǎn)為N,線段NA與球O的球面的交點(diǎn)為E,且E恰為線段NA的中點(diǎn),則球O的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長(zhǎng)是4,對(duì)角線AC與BD交于O.將正方形ABCD沿對(duì)角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)已知中心為O的正方形ABCD的邊長(zhǎng)為2,點(diǎn)M,N分別為線段BC,CD上的兩個(gè)不同點(diǎn),且|
MN
|=1,則
OM
ON
的取值范圍是
[2-
2
,1]
[2-
2
,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案