20.如圖所示,要圍建一個(gè)面積為400m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻時(shí)需要維修),其他三面圍墻要新建,在舊墻對(duì)面的新墻上要留一個(gè)寬度為3m的進(jìn)出口,已知舊墻的維修費(fèi)用為56元/m,新墻的造價(jià)為200元/m,設(shè)利用舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地的總費(fèi)用為y(單位:元).
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)試確定x的值,使修建此矩形場(chǎng)地的總費(fèi)用最小,并求出最小總費(fèi)用.

分析 (1)由題意由題意知,矩形的一邊長(zhǎng)為xm,另一邊長(zhǎng)為$\frac{400}{x}$m,根據(jù)舊墻的維修費(fèi)用為56元/m,新墻的造價(jià)為200元/m,從而得出y關(guān)于x的函數(shù)表達(dá)式;(2)因?yàn)閤>0,所以運(yùn)用基本不等式求出最小值,利用基本不等式等號(hào)成立的條件得出此時(shí)x的值.

解答 解:(1)由題意知,矩形的一邊長(zhǎng)為xm,另一邊長(zhǎng)為$\frac{400}{x}$m,
則y=56x+200(x-3)+200×$\frac{400}{x}$×2
=256x+$\frac{160000}{x}$-600(x>0).
故y=256x+$\frac{160000}{x}$-600(x>0).
(2)因?yàn)閤>0,所以256x+$\frac{160000}{x}$≥2$\sqrt{256×40{0}^{2}}$=12800,
所以y=256x+$\frac{160000}{x}$-600≥12200,
當(dāng)且僅當(dāng)256x=$\frac{160000}{x}$,即x=25時(shí),等號(hào)成立.
故當(dāng)利用舊墻的長(zhǎng)度為25m時(shí),修建此矩形場(chǎng)地的總費(fèi)用最小,最小總費(fèi)用是12200元.

點(diǎn)評(píng) 本題考查了基本不等式在最值問題中的應(yīng)用,注意滿足的條件:一正二定三等,考查了運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)
(Ⅰ)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了研究A、B兩種注射藥物的不良反應(yīng),將200只家兔隨機(jī)地分成甲、乙兩組,每組100只,其中甲組注射藥物A,乙組注射藥物B,觀察甲、乙兩組注射藥物后產(chǎn)生的皮膚皰疹面積.圖(1)和圖(2)分別是甲、乙兩組注射藥物后的試驗(yàn)結(jié)果.(皰疹面積單位:mm2

(1)完成下面2×2列聯(lián)表:
 皰疹面積小于70mm2 皰疹面積不小于70mm2 合計(jì)
 注射藥物A   
 注射藥物B   
 合計(jì)  
(2)判斷能否有99%的把握認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”
附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(X2≥k) 0.05 0.01
 k 3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)復(fù)數(shù)z滿足(2z-i)(2-i)=5,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}是公比為2的等比數(shù)列,且a2=-1,則a6=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且acosC+$\frac{1}{2}$c=b.
(1)求A的大;
(2)若a=$\frac{\sqrt{3}}{2}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x>0}\\{0,x=0}\\{{x}^{2}+mx,x<0}\end{array}\right.$是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[a,a+$\frac{3}{2}$]上單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.倉(cāng)庫(kù)貯存水果a噸,原計(jì)劃每天供應(yīng)市場(chǎng)m噸,若每天多供應(yīng)2噸,則要少供應(yīng)($\frac{a}{m}$-$\frac{a}{m+2}$)天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,E是圓內(nèi)兩弦AB和CD的交點(diǎn),F(xiàn)為AD延長(zhǎng)線上一點(diǎn),F(xiàn)G切圓于G,且FE=FG.
(I)證明:FE∥BC;
(Ⅱ)若AB⊥CD,∠DEF=30°,求$\frac{AF}{FG}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案