已知函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且定義域?yàn)椋?1,1),f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b的值;
(2)求證:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù).
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由于f(x)是奇函數(shù),且定義域?yàn)椋?1,1),則f(0)=0,求得b,再由代入法,即可得到a;
(2)運(yùn)用定義證明,注意取值、作差、變形和定符號(hào)、下結(jié)論幾個(gè)步驟.
解答: (1)解:由于f(x)是奇函數(shù),且定義域?yàn)椋?1,1),
則f(0)=0,即有b=0,
f(
1
2
)=
2
5
.即有
1
2
a
1+
1
4
=
2
5
,
解得,a=1,
即有a=1,b=0;
(2)證明:f(x)=
x
1+x2
,
令-1<m<n<1,則f(m)-f(n)=
m
1+m2
-
n
1+n2

=
(m-n)(1-mn)
(1+m2)(1+n2)
,
由于-1<m<n<1,則m-n<0,1-mn>0,(1+m2)(1+n2)>0,
則f(m)-f(n)<0,即有f(m)<f(n),
則函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù).
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的判斷和單調(diào)性的證明,注意運(yùn)用定義和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4,下列五個(gè)命題:
①圓心在定直線上運(yùn)動(dòng);
②存在一條定直線與所有的圓均相切;
③存在一條定直線與所有的圓均相交;
④存在一條定直線與所有的圓均不相交;
⑤所有的圓均不過(guò)原點(diǎn);
其中正確的有
 
(填上所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a<b<c,則函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的兩個(gè)零點(diǎn)分別位于區(qū)間( 。
A、(b,c)和 (c,+∞) 內(nèi)
B、(-∞,a)和(a,b)內(nèi)
C、(a,b)和(b,c)內(nèi)
D、(-∞,a)和(c,+∞) 內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式x2≤5x-4的解集為A.
(1)求集合A;
(2)設(shè)關(guān)于x的不等式x2-(a+2)x+2a≤0(a≥2)的解集為M.若條件p:x∈M,條件q:x∈A,且p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從932人中抽取一個(gè)樣本容量為100的樣本,采用系統(tǒng)抽樣的方法則必須從這932人中剔除( 。┤耍
A、32B、24C、16D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)當(dāng)t=5時(shí),求函數(shù)g(x)圖象過(guò)的定點(diǎn);
(2)當(dāng)t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(
3
x+φ)(0<φ<π)
,若f(x)+f′(x)為奇函數(shù),則φ=( 。
A、
π
2
B、
π
3
C、
π
4
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式能用完全平方公式進(jìn)行分解因式的是( 。
A、x2+1
B、x2+2x-1
C、x2+x+1
D、x2+4x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)g(x)=4x+m圖象不過(guò)第二象限,則m的取值范圍是( 。
A、m≤-1B、m<-1
C、m≤-4D、m<-4

查看答案和解析>>

同步練習(xí)冊(cè)答案