平面向量
a
,
b
滿足
b
=2
a
如果
a
=(1,1),那么
b
等于(  )
A、-(2,2)
B、(-2,-2)
C、(2,-2)
D、(2,2)
考點:平面向量的坐標(biāo)運算
專題:平面向量及應(yīng)用
分析:直接利用向量的坐標(biāo)運算求解即可.
解答: 解:平面向量
a
,
b
滿足
b
=2
a
如果
a
=(1,1),
那么
b
=2(1,1)=(2,2).
故選:D.
點評:本題考查平面向量的坐標(biāo)運算,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}各項均為正數(shù),其前n項和Sn滿足2Sn=a
 
2
n
+an(n∈N*).
(1)證明:{an}為等差數(shù)列;
(2)令bn=
lnan
a
2
n
,記{bn}的前n項和為Tn,求證:Tn
2n2-n-1
4(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,AB=8,AC=6,BC=10,頂點A、B、C處分別有一枚半徑為1的硬幣(頂點A、B、C分別與硬幣的中心重合).向△ABC內(nèi)部投一點,那么該點落在陰影部分的概率為( 。
A、1-
π
24
B、1-
π
48
C、
π
24
D、
π
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(sinx-cosx)2的最小正周期為( 。
A、2π
B、
2
C、π
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(2,1),
b
=(-4,k),且
a
b
,則3
a
+2
b
=(  )
A、(-2,4)
B、( 4,7)
C、(-2,19)
D、(19,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
1
2
an+
1
2n+1
(n≥1),其中a1=
1
4

(Ⅰ)求a1,a2,a3
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-1)2=2,方向向量
d
=(1,1)
的直線l過點P(0,4),則圓C上的點到直線l的距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足:“對于區(qū)間(0,+∞)上的任意a,b,都有f(a+b)>f(b)成立”.
(Ⅰ)求f(0)的值,并指出f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)用增函數(shù)的定義證明:函數(shù)f(x)是(-∞,0)上的增函數(shù);
(Ⅲ)判斷f(x)是否為R上的增函數(shù),如果是,請給出證明;如果不是,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限角,且sin(
π
2
)=-
1
3
,則tan2α的值為( 。
A、
4
2
7
B、-
4
2
7
C、
4
2
9
D、-
4
2
9

查看答案和解析>>

同步練習(xí)冊答案